ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Mapping of Atrial Fiber Orientations for Patient-Specific Modeling of Cardiac Electromechanics using Image-Registration

72   0   0.0 ( 0 )
 نشر من قبل Martin Pfaller
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge of appropriate local fiber architecture is necessary to simulate patient-specific electromechanics in the human heart. However, it is not yet possible to reliably measure in-vivo fiber directions, especially in human atria. Thus, we present a method which defines the fiber architecture in arbitrarily shaped atria using image registration and reorientation methods based on atlas atria with fibers predefined from detailed histological observations. Thereby, it is possible to generate detailed fiber families in every new patient-specific geometry in an automated, time-efficient process. We demonstrate the good performance of the image registration and fiber definition on ten differently shaped human atria. Additionally, we show that characteristics of the electrophysiological activation pattern which appear in the atlas atria also appear in the patients atria. We arrive at analogous conclusions for coupled electro-mechano-hemodynamical computations.



قيم البحث

اقرأ أيضاً

Invasive intracranial electroencephalography (iEEG) or electrocorticography (ECoG) measures electrical potential directly on the surface of the brain, and, combined with numerical modeling, can be used to inform treatment planning for epilepsy surger y. Accurate solution of the iEEG or ECoG forward problem, which is a crucial prerequisite for solving the inverse problem in epilepsy seizure onset localization, requires accurate representation of the patients brain geometry and tissue electrical conductivity after implantation of electrodes. However, implantation of subdural grid electrodes causes the brain to deform, which invalidates preoperatively acquired image data. Moreover, postoperative MRI is incompatible with implanted electrodes and CT has insufficient range of soft tissue contrast, which precludes both MRI and CT from being used to obtain the deformed postoperative geometry. In this paper, we present a biomechanics-based image warping procedure using preoperative MRI for tissue classification and postoperative CT for locating implanted electrodes to perform non-rigid registration of the preoperative image data to the postoperative configuration. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. Results for the simulation of a current source in the brain show large differences in electrical potential predicted by the models based on the original images and the deformed images corresponding to the brain geometry deformed by placement of invasive electrodes. Computation of the leadfield matrix also showed significant differences between the different models. The results suggest that significant improvements in source localization accuracy may be realized by the application of the proposed modeling methodology.
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE ). A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes. WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture. Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter-and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.
The launch of KALPANA-1 satellite in the year 2002 heralded the establishment of an indigenous operational payload for meteorological predictions. This was further enhanced in the year 2003 with the launching of INSAT-3A satellite. The software for g enerating products from the data of these two satellites was taken up subsequently in the year 2004 and the same was installed at the Indian Meteorological Department, New Delhi in January 2006. Registration has been one of the most fundamental operations to generate almost all the data products from the remotely sensed data. Registration is a challenging task due to inevitable radiometric and geometric distortions during the acquisition process. Besides the presence of clouds makes the problem more complicated. In this paper, we present an algorithm for multitemporal and multiband registration. In addition, India facing reference boundaries for the CCD data of INSAT-3A have also been generated. The complete implementation is made up of the following steps: 1) automatic identification of the ground control points (GCPs) in the sensed data, 2) finding the optimal transformation model based on the match-points, and 3) resampling the transformed imagery to the reference coordinates. The proposed algorithm is demonstrated using the real datasets from KALPANA-1 and INSAT-3A. Both KALAPANA-1 and INSAT-3A have recently been decommissioned due to lack of fuel, however, the experience gained from them have given rise to a series of meteorological satellites and associated software; like INSAT-3D series which give continuous weather forecasting for the country. This paper is not so much focused on the theory (widely available in the literature) but concentrates on the implementation of operational software.
Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.
An arteriovenous fistula, created by artificially connecting segments of a patients vasculature, is the preferred way to gain access to the bloodstream for kidney dialysis. The increasing power and availability of supercomputing infrastructure means that it is becoming more realistic to use simulations to help identify the best type and location of a fistula for a specific patient. We describe a 3D fistula model that uses the lattice Boltzmann method to simultaneously resolve blood flow in patient-specific arteries and veins. The simulations conducted here, comprising vasculatures of the whole forearm, demonstrate qualified validation against clinical data. Ongoing research to further encompass complex biophysics on realistic time scales will permit the use of human-scale physiological models for basic and clinical medicine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا