ترغب بنشر مسار تعليمي؟ اضغط هنا

BBS invariant measures with independent soliton components

50   0   0.0 ( 0 )
 نشر من قبل Davide Gabrielli
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Box-Ball System (BBS) is a one-dimensional cellular automaton in ${0,1}^Z$ introduced by Takahashi and Satsuma cite{TS}, who also identified conserved sequences called emph{solitons}. Integers are called boxes and a ball configuration indicates the boxes occupied by balls. For each integer $kge1$, a $k$-soliton consists of $k$ boxes occupied by balls and $k$ empty boxes (not necessarily consecutive). Ferrari, Nguyen, Rolla and Wang cite{FNRW} define the $k$-slots of a configuration as the places where $k$-solitons can be inserted. Labeling the $k$-slots with integer numbers, they define the $k$-component of a configuration as the array ${zeta_k(j)}_{jin mathbb Z}$ of elements of $Z_{ge0}$ giving the number $zeta_k(j)$ of $k$-solitons appended to $k$-slot $jin mathbb Z$. They also show that if the Palm transform of a translation invariant distribution $mu$ has independent soliton components, then $mu$ is invariant for the automaton. We show that for each $lambdain[0,1/2)$ the Palm transform of a product Bernoulli measure with parameter $lambda$ has independent soliton components and that its $k$-component is a product measure of geometric random variables with parameter $1-q_k(lambda)$, an explicit function of $lambda$. The construction is used to describe a large family of invariant measures with independent components under the Palm transformation, including Markov measures.

قيم البحث

اقرأ أيضاً

We consider the simple exclusion process on Z x {0, 1}, that is, an horizontal ladder composed of 2 lanes. Particles can jump according to a lane-dependent translation-invariant nearest neighbour jump kernel, i.e. horizontally along each lane, and ve rtically along the scales of the ladder. We prove that generically, the set of extremal invariant measures consists of (i) translation-invariant product Bernoulli measures; and, modulo translations along Z: (ii) at most two shock measures (i.e. asymptotic to Bernoulli measures at $pm$$infty$) with asymptotic densities 0 and 2; (iii) at most three shock measures with a density jump of magnitude 1. We fully determine this set for certain parameter values. In fact, outside degenerate cases, there is at most one shock measure of type (iii). The result can be partially generalized to vertically cyclic ladders with arbitrarily many lanes. For the latter, we answer an open question of [5] about rotational invariance of stationary measures.
We develop a dynamical approach to infinite volume directed polymer measures in random environments. We define polymer dynamics in 1+1 dimension as a stochastic gradient flow on polymers pinned at the origin, for energy involving quadratic nearest ne ighbor interaction and local interaction with random environment. We prove existence and uniqueness of the solution, continuity of the flow, the order-preserving property with respect to the coordinatewise partial order, and the invariance of the asymptotic slope. We establish ordering by noise which means that if two initial conditions have distinct slopes, then the associated solutions eventually get ordered coordinatewise. This, along with the shear-invariance property and existing results on static infinite volume polymer measures, allows to prove that for a fixed asymptotic slope and almost every realization of the environment, the polymer dynamics has a unique invariant distribution given by a unique infinite volume polymer measure, and, moreover, One Force -- One Solution principle holds. We also prove that every polymer measure is concentrated on paths with well-defined asymptotic slopes and give an estimate on deviations from straight lines.
We consider random walks on the group of orientation-preserving homeomorphisms of the real line ${mathbb R}$. In particular, the fundamental question of uniqueness of an invariant measure of the generated process is raised. This problem was already s tudied by Choquet and Deny (1960) in the context of random walks generated by translations of the line. Nowadays the answer is quite well understood in general settings of strongly contractive systems. Here we focus on broader class of systems satisfying the conditions: recurrence, contraction and unbounded action. We prove that under these conditions the random process possesses a unique invariant Radon measure on ${mathbb R}$. Our work can be viewed as a subsequent paper of Babillot et al. (1997) and Deroin et al. (2013).
We study forking, Lascar strong types, Keisler measures and definable groups, under an assumption of $NIP$ (not the independence property), continuing aspects of math.LO/0607442. Among key results are: (i) if $p = tp(b/A)$ does not fork over $A$ then the Lascar strong type of $b$ over $A$ coincides with the compact strong type of $b$ over $A$ and any global nonforking extension of $p$ is Borel definable over $bdd(A)$ (ii) analogous statements for Keisler measures and definable groups, including the fact that $G^{000} = G^{00}$ for $G$ definably amenable, (iii) definitions, characterizations and properties of generically stable types and groups (iv) uniqueness of translation invariant Keisler measures on groups with finitely satisfiable generics (vi) A proof of the compact domination conjecture for definably compact commutative groups in $o$-minimal expansions of real closed fields.
Appropriately representing elements in a database so that queries may be accurately matched is a central task in information retrieval; recently, this has been achieved by embedding the graphical structure of the database into a manifold in a hierarc hy-preserving manner using a variety of metrics. Persistent homology is a tool commonly used in topological data analysis that is able to rigorously characterize a database in terms of both its hierarchy and connectivity structure. Computing persistent homology on a variety of embedded datasets reveals that some commonly used embeddings fail to preserve the connectivity. We show that those embeddings which successfully retain the database topology coincide in persistent homology by introducing two dilation-invariant comparative measures to capture this effect: in particular, they address the issue of metric distortion on manifolds. We provide an algorithm for their computation that exhibits greatly reduced time complexity over existing methods. We use these measures to perform the first instance of topology-based information retrieval and demonstrate its increased performance over the standard bottleneck distance for persistent homology. We showcase our approach on databases of different data varieties including text, videos, and medical images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا