ترغب بنشر مسار تعليمي؟ اضغط هنا

An Unpaired Shape Transforming Method for Image Translation and Cross-Domain Retrieval

60   0   0.0 ( 0 )
 نشر من قبل Jose Oramas
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the problem of unpaired geometric image-to-image translation. Rather than transferring the style of an image as a whole, our goal is to translate the geometry of an object as depicted in different domains while preserving its appearance characteristics. Our model is trained in an unpaired fashion, i.e. without the need of paired images during training. It performs all steps of the shape transfer within a single model and without additional post-processing stages. Extensive experiments on the VITON, CMU-Multi-PIE and our own FashionStyle datasets show the effectiveness of the method. In addition, we show that despite their low-dimensionality, the features learned by our model are useful to the item retrieval task.



قيم البحث

اقرأ أيضاً

Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin g a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each domain is only a single image.
Image-to-image translation tasks have been widely investigated with Generative Adversarial Networks (GANs). However, existing approaches are mostly designed in an unsupervised manner while little attention has been paid to domain information within u npaired data. In this paper, we treat domain information as explicit supervision and design an unpaired image-to-image translation framework, Domain-supervised GAN (DosGAN), which takes the first step towards the exploration of explicit domain supervision. In contrast to representing domain characteristics using different generators or domain codes, we pre-train a classification network to explicitly classify the domain of an image. After pre-training, this network is used to extract the domain-specific features of each image. Such features, together with the domain-independent features extracted by another encoder (shared across different domains), are used to generate image in target domain. Extensive experiments on multiple facial attribute translation, multiple identity translation, multiple season translation and conditional edges-to-shoes/handbags demonstrate the effectiveness of our method. In addition, we can transfer the domain-specific feature extractor obtained on the Facescrub dataset with domain supervision information to unseen domains, such as faces in the CelebA dataset. We also succeed in achieving conditional translation with any two images in CelebA, while previous models like StarGAN cannot handle this task.
Recently unpaired multi-domain image-to-image translation has attracted great interests and obtained remarkable progress, where a label vector is utilized to indicate multi-domain information. In this paper, we propose SAT (Show, Attend and Translate ), an unified and explainable generative adversarial network equipped with visual attention that can perform unpaired image-to-image translation for multiple domains. By introducing an action vector, we treat the original translation tasks as problems of arithmetic addition and subtraction. Visual attention is applied to guarantee that only the regions relevant to the target domains are translated. Extensive experiments on a facial attribute dataset demonstrate the superiority of our approach and the generated attention masks better explain what SAT attends when translating images.
167 - Yihao Zhao , Ruihai Wu , Hao Dong 2020
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th e strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا