ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic control of polariton spin transport

68   0   0.0 ( 0 )
 نشر من قبل Dario Ballarini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show the full control of the polarization dynamics of a propagating exciton-polariton condensate in a planar microcavity by using a magnetic field applied in the Voigt geometry. The change of the spin-beat frequency, the suppression of the optical spin Hall effect and the rotation of the polarization pattern by the magnetic field are theoretically reproduced by accounting for the magneto-induced mixing of exciton-polariton and dark, spin forbidden, exciton states.

قيم البحث

اقرأ أيضاً

The transport distance of excitons in exciton-polariton systems has previously been assumed to be very small ($lesssim 1~mu$m). The sharp spatial profiles observed when generating polaritons by non-resonant optical excitation show that this assumptio n is generally true. In this paper, however, we show that the transport distances of excitons in two-dimensional planar cavity structures with even a slightly polaritonic character are much longer than expected ($approx 20~mu$m). Although this population of slightly polaritonic excitons is normally small compared to the total population of excitons, they can substantially outnumber the population of the polaritons at lower energies, leading to important implications for the tailoring of potential landscapes and the measurement of interactions between polaritons.
105 - L. Dominici , D. Colas , S. Donati 2014
We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or swi tching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.
We have observed the effect of pseudo magnetic field originating from the polaritonic analog of spin-orbit coupling (TE$-$TM splitting) on a polariton condensate in a ring-shaped microcavity. The effect gives rise to a stable four-leaf pattern around the ring as seen from the linear polarization measurements of the condensate photoluminescence. This pattern is found to originate from the interplay of the cavity potential, energy relaxation, and TE-TM splitting in the ring. Our observations are compared to the dissipative one-dimensional spinor Gross-Pitaevskii equation with the TE-TM splitting energy which shows good qualitative agreement.
We consider a condensate of exciton-polaritons in a diluted magnetic semiconductor microcavity. Such system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconduc tor. We investigate the effect of the nonequilibrium nature of exciton-polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and derive a critical condition for self-trapping which is different to the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.
We demonstrate the existence of the excited state of an exciton-polariton in a semiconductor microcavity. The strong coupling of the quantum well heavy-hole exciton in an excited 2s state to the cavity photon is observed in non-zero magnetic field du e to surprisingly fast increase of Rabi energy of the 2s exciton-polariton in magnetic field. This effect is explained by a strong modification of the wave-function of the relative electron-hole motion for the 2s exciton state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا