ﻻ يوجد ملخص باللغة العربية
We report on the coupling of an electric quadrupole transition in atom with plasmonic excitation in a nanostructured metallic metamaterial. The quadrupole transition at 685 nm in the gas of Cesium atoms is optically pumped, while the induced ground state population depletion is probed with light tuned on the strong electric dipole transition at 852 nm. We use selective reflection to resolve the Doppler-free hyperfine structure of Cesium atoms. We observed a strong modification of the reflection spectra at the presence of metamaterial and discuss the role of the spatial variation of the surface plasmon polariton on the quadrupole coupling.
Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential
Recent advances in the high sensitivity spectroscopy have made it possible, in combination with accurate theoretical predictions, to observe for the first time very weak electric quadrupole transitions in a polar polyatomic molecule of water. Here we
Effect of the electric quadrupole moment, $Q$, is studied for positron-atom bound systems. It is demonstrated that for $Q >50$ a.u. the electric quadrupole potential is sufficiently strong to bind positron (or electron) even in the absence of the dip
Assuming that the resonant surface plasmons on a spherical nanoparticle is formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon re
We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high Rydberg states in Rb. Using pulsed UV excitation of ultracold atoms in a magneto-optical trap, we excite $5s to nd$ transitions over a range of prin