ترغب بنشر مسار تعليمي؟ اضغط هنا

Operadic categories and decalage

94   0   0.0 ( 0 )
 نشر من قبل Richard Garner
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Batanin and Markls operadic categories are categories in which each map is endowed with a finite collection of abstract fibres -- also objects of the same category -- subject to suitable axioms. We give a reconstruction of the data and axioms of operadic categories in terms of the decalage comonad D on small categories. A simple case involves unary operadic categories -- ones wherein each map has exactly one abstract fibre -- which are exhibited as categories which are, first of all, coalgebras for the comonad D, and, furthermore, algebras for the monad induced on the category of D-coalgebras by the forgetful-cofree adjunction. A similar description is found for general operadic categories arising out of a corresponding analysis that starts from a modified decalage comonad on the arrow category of Cat.



قيم البحث

اقرأ أيضاً

The aim of this sequel to arXiv:1812.02935 is to set up the cornerstones of Koszul duality and Koszulity in the context of a large class of operadic categories. In particular, we will prove that operads, in the generalized sense of Batanin-Markl, gov erning important operad- and/or PROP-like structures such as the classical operads, their variants such as cyclic, modular or wheeled operads, and also diver
We construct explicit minimal models for the (hyper)operads governing modular, cyclic and ordinary operads, and wheeled properads, respectively. Algebras for these models are homoto
119 - Michael Batanin 2015
We prove a stabilization theorem for algebras of n-operads in a monoidal model category. It implies a version of Baez-Dolan stabilization hypothesis for Rezks weak n-categories and some other stabilization results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا