ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative AGN feedback on a moving mesh: the impact of the galactic disc and dust physics on outflow properties

62   0   0.0 ( 0 )
 نشر من قبل David Barnes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David J. Barnes




اسأل ChatGPT حول البحث

Feedback from accreting supermassive black holes, active galactic nuclei (AGN), is now a cornerstone of galaxy formation models. In this work, we present radiation-hydrodynamic simulations of radiative AGN feedback using the novel Arepo-RT. A central black hole emits radiation at a constant luminosity and drives an outflow via radiation pressure on dust grains. Utilising an isolated NFW halo we validate our setup in the single and multi-scattering regimes, with the simulated shock front propagation in excellent agreement with the expected analytic result. For a spherically symmetric NFW halo, an examination of the simulated outflow properties generated by radiative feedback demonstrates that they are lower than typically observed at a fixed AGN luminosity, regardless of the collimation of the radiation. We then explore the impact of a central disc galaxy and the assumed dust model on the outflow properties. The contraction of the halo during the galaxys formation and modelling the production of dust grains results in a factor $100$ increase in the halos optical depth. Radiation is then able to couple momentum more efficiently to the gas, driving a stronger shock and producing a mass-loaded $sim10^{3},mathrm{M}_{odot},mathrm{yr}^{-1}$ outflow with a velocity of $sim2000,mathrm{km},mathrm{s}^{-1}$, in agreement with observations. However, the inclusion of dust destruction mechanisms, like thermal sputtering, leads to the rapid destruction of dust grains within the outflow, reducing its properties below typically observed values. We conclude that radiative AGN feedback can drive outflows, but a thorough numerical and physical treatment is required to assess its true impact.

قيم البحث

اقرأ أيضاً

We introduce the Stars and MUltiphase Gas in GaLaxiEs -- SMUGGLE model, an explicit and comprehensive stellar feedback model for the moving-mesh code arepo. This novel sub-resolution model resolves the multiphase gas structure of the interstellar med ium and self-consistently generates gaseous outflows. The model implements crucial aspects of stellar feedback including photoionization, radiation pressure, energy and momentum injection from stellar winds and from supernovae. We explore this model in high-resolution isolated simulations of Milky Way-like disc galaxies. Stellar feedback regulates star formation to the observed level and naturally captures the establishment of a Kennicutt-Schmidt relation. This result is achieved independent of the numerical mass and spatial resolution of the simulations. Gaseous outflows are generated with average mass loading factors of the order of unity. Strong outflow activity is correlated with peaks in the star formation history of the galaxy with evidence that most of the ejected gas eventually rains down onto the disc in a galactic fountain flow that sustains late-time star formation. Finally, the interstellar gas in the galaxy shows a distinct multiphase distribution with a coexistence of cold, warm and hot phases.
We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift $z=0$. The haloes are drawn from the IllustrisTNG project, a suite of magneto-hydrodynamic simulations of galaxies. We focus on haloes of mass $10^{10-14} M_odot$ from the 50-Mpc (TNG50) and 100-Mpc (TNG100) boxes, and compare them to dark matter-only (DMO) analogues and other simulations e.g. NIHAO and Eagle. We further quantify the prediction uncertainty by varying the baryonic feedback models in a series of smaller 25 Mpc $h^{-1}$ boxes. We find that: (i) galaxy formation results in rounder haloes compared to the DMO simulations, in qualitative agreement with past hydrodynamic models. Haloes of mass $approx 2times 10^{12} M_odot$ are most spherical, with an average minor-to-major axis ratio of $left< s right> approx 0.75$ in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant change in halo shape is found for low-mass $10^{10} M_odot$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, which can explain the dependence of halo shapes on different feedback models; (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. Yet, at fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner halo shapes that are closer to one another than to the DMO results. This implies that a larger observational sample would be required to statistically distinguish between different baryonic prescriptions due to large halo-to-halo variation in halo shapes.
A numerical shearing box is used to perform three-dimensional simulations of a 1 kpc stratified cubic box of turbulent and self-gravitating interstellar medium (in a rotating frame) with supernovae and HII feedback. We vary the value of the velocity gradient induced by the shear and the initial value of the galactic magnetic field. Finally the different star formation rates and the properties of the structures associated with this set of simulations are computed. We first confirm that the feedback has a strong limiting effect on star formation. The galactic shear has also a great influence: the higher the shear, the lower the SFR. Taking the value of the velocity gradient in the solar neighbourhood, the SFR is too high compared to the observed Kennicutt law, by a factor approximately three to six. This discrepancy can be solved by arguing that the relevant value of the shear is not the one in the solar neighbourhood, and that in reality the star formation efficiency within clusters is not 100%. Taking into account the fact that star-forming clouds generally lie in spiral arms where the shear can be substantially higher (as probed by galaxy-scale simulations), the SFR is now close to the observed one. Different numerical recipes have been tested for the sink particles, giving a numerical incertitude of a factor of about two on the SFR. Finally we have also estimated the velocity dispersions in our dense clouds and found that they lie below the observed Larson law by a factor of about two. Conclusions. In our simulations, magnetic field, shear, HII regions, and supernovae all contribute significantly to reduce the SFR. In this numerical setup with feedback from supernovae and HII regions and a relevant value of galactic shear, the SFRs are compatible with those observed, with a numerical incertitude factor of about two.
Accurate numerical solutions of the equations of hydrodynamics play an ever more important role in many fields of astrophysics. In this work, we reinvestigate the accuracy of the moving-mesh code textsc{Arepo} and show how its convergence order can b e improved for general problems. In particular, we clarify that for certain problems textsc{Arepo} only reaches first-order convergence for its original formulation. This can be rectified by simple modifications we propose to the time integration scheme and the spatial gradient estimates of the code, both improving the accuracy of the code. We demonstrate that the new implementation is indeed second-order accurate under the $L^1$ norm, and in particular substantially improves conservation of angular momentum. Interestingly, whereas these improvements can significantly change the results of smooth test problems, we also find that cosmological simulations of galaxy formation are unaffected, demonstrating that the numerical errors eliminated by the new formulation do not impact these simulations. In contrast, simulations of binary stars followed over a large number of orbital times are strongly affected, as here it is particularly crucial to avoid a long-term build up of errors in angular momentum conservation.
Modeling the evolution of the elements in the Milky Way is a multidisciplinary and challenging task. In addition to simulating the 13 billion years evolution of our Galaxy, chemical evolution simulations must keep track of the elements synthesized an d ejected from every astrophysical site of interest (e.g., supernova, compact binary merger). The elemental abundances of such ejecta, which are a fundamental input for chemical evolution codes, are usually taken from theoretical nucleosynthesis calculations performed by the nuclear astrophysics community. Therefore, almost all chemical evolution predictions rely on the nuclear physics behind those calculations. In this proceedings, we highlight the impact of nuclear physics uncertainties on galactic chemical evolution predictions. We demonstrate that nuclear physics and galactic evolution uncertainties both have a significant impact on interpreting the origin of neutron-capture elements in our Solar System. Those results serve as a motivation to create and maintain collaborations between the fields of nuclear astrophysics and galaxy evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا