ﻻ يوجد ملخص باللغة العربية
In this paper we study the ground state properties of a ladder Hamiltonian with chiral $SU(2)$-invariant spin interactions, a possible first step towards the construction of truly two dimensional non-trivial systems with chiral properties starting from quasi-one dimensional ones. Our analysis uses a recent implementation by us of $SU(2)$ symmetry in tensor network algorithms, specifically for infinite Density Matrix Renormalization Group (iDMRG). After a preliminary analysis with Kadanoff coarse-graining and exact diagonalization for a small-size system, we discuss its bosonization and recap the continuum limit of the model to show that it corresponds to a conformal field theory, in agreement with our numerical findings. In particular, the scaling of the entanglement entropy as well as finite-entanglement scaling data show that the ground state properties match those of the universality class of a $c = 1$ conformal field theory (CFT) in $(1+1)$ dimensions. We also study the algebraic decay of spin-spin and dimer-dimer correlation functions, as well as the algebraic convergence of the ground state energy with the bond dimension, and the entanglement spectrum of half an infinite chain. Our results for the entanglement spectrum are remarkably similar to those of the spin-$1/2$ Heisenberg chain, which we take as a strong indication that both systems are described by the same CFT at low energies, i.e., an $SU(2)_1$ Wess-Zumino-Witten theory. Moreover, we explain in detail how to construct Matrix Product Operators for $SU(2)$-invariant three-spin interactions, something that had not been addressed with sufficient depth in the literature.
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2|2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the ad
Quantum electrodynamics in 2+1 dimensions is an effective gauge theory for the so called algebraic quantum liquids. A new type of such a liquid, the algebraic charge liquid, has been proposed recently in the context of deconfined quantum critical poi
We consider the string-net model obtained from $SU(2)_2$ fusion rules. These fusion rules are shared by two different sets of anyon theories. In this work, we study the competition between the two corresponding non-Abelian quantum phases in the ladde
We report on zero-field muon spin rotation, electron spin resonance and polarized Raman scattering measurements of the coupled quantum spin ladder Ba2CuTeO6. Zero-field muon spin rotation and electron spin resonance probes disclose a successive cross
It was proposed in [(https://doi.org/10.1103/PhysRevLett.114.145301){Chen et al., Phys. Rev. Lett. $mathbf{114}$, 145301 (2015)}] that spin-2 chains display an extended critical phase with enhanced SU$(3)$ symmetry. This hypothesis is highly unexpect