ﻻ يوجد ملخص باللغة العربية
It is establish regularity results for weak solutions of quasilinear elliptic problems driven by the well known $Phi$-Laplacian operator given by begin{equation*} left{ begin{array}{cl} displaystyle-Delta_Phi u= g(x,u), & mbox{in}~Omega, u=0, & mbox{on}~partial Omega, end{array} right. end{equation*} where $Delta_{Phi}u :=mbox{div}(phi(| abla u|) abla u)$ and $Omegasubsetmathbb{R}^{N}, N geq 2,$ is a bounded domain with smooth boundary $partialOmega$. Our work concerns on nonlinearities $g$ which can be homogeneous or non-homogeneous. For the homogeneous case we consider an existence result together with a regularity result proving that any weak solution remains bounded. Furthermore, for the non-homogeneous case, the nonlinear term $g$ can be subcritical or critical proving also that any weak solution is bounded. The proofs are based on Mosers iteration in Orclicz and Orlicz-Sobolev spaces.
The aim of this paper is to establish two results about multiplicity of solutions to problems involving the $1-$Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem $$ left{ begin{array}{l}
This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $Phi$-Laplacian operator. The proof of existence is based on a variant of t
In this paper we prove regularity results for a class of nonlinear degenerate elliptic equations of the form $displaystyle -operatorname{div}(A(| abla u|) abla u)+Bleft( | abla u|right) =f(u)$; in particular, we investigate the second order regularit
We deal with a global Calderon-Zygmund type estimate for elliptic obstacle problems of $p$-Laplacian type with measure data. For this paper, we focus on the singular case of growth exponent, i.e. $1<p le 2-frac{1}{n}$. In addition, the emphasis of th
This article concerns with the global Holder regularity of weak solutions to a class of problems involving the fractional $(p,q)$-Laplacian, denoted by $(-Delta)^{s_1}_{p}+(-Delta)^{s_2}_{q}$, for $1<p,q<infty$ and $s_1,s_2in (0,1)$. We use a suitabl