ترغب بنشر مسار تعليمي؟ اضغط هنا

Module concept and thermo-mechanical studies of the silicon-based TT-PET small-animal scanner

165   0   0.0 ( 0 )
 نشر من قبل Pierpaolo Valerio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The TT-PET collaboration is developing an MRI-compatible small animal PET scanner in which the sensitive element is a monolithic silicon pixel ASIC targeting 30 ps RMS time resolution. The photon-detection technique is based on a stack of alternating layers of high-Z photon converter and 100 $mathrm{mu m}$ silicon sensors, to produce a scanner with 0.5 $mathrm{times}$ 0.5 $mathrm{times}$ 0.2 $mathrm{mm^{3}}$ granularity for precise depth-of-interaction measurement. In this paper we present the results of simulation studies for the expected data rate, time-of-flight and spatial resolution, as well as the performance of image reconstruction with and without the use of timing information.



قيم البحث

اقرأ أيضاً

The TT-PET collaboration is developing a small animal TOF-PET scanner based on monolithic silicon pixel sensors in SiGe BiCMOS technology. The demonstrator chip, a small-scale version of the final detector ASIC, consists of a 3 x 10 pixel matrix inte grated with the front-end, a 50 ps binning TDC and read out logic. The chip, thinned down to 100 {mu}m and backside metallized, was operated at a voltage of 180 V. The tests on a beam line of minimum ionizing particles show a detection efficiency greater than 99.9 % and a time resolution down to 110 ps.
60 - A. Fedorov 2002
Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP pho swich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.
The purpose of the presented research is estimation of the performance characteristics of the economic Total-Body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMA NU-2- 2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips (each with cross section of 6 mm times 30 mm and length of 140 cm or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with the diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolutions of 3.7 mm (transversal) and 4.9 mm (axial) are achieved. The NECR peak of 630 kcps is expected at 30 kBq/cc activity concentration and the sensitivity at the center amounts to 38 cps/kBq. The SF is estimated to 36.2 %. The values of SF and spatial resolution are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET. With respect to the standard PET systems with AFOV in the range from 16 cm to 26 cm, the TB-J-PET is characterized by an increase in NECR approximately by factor of 4 and by the increase of the whole-body sensitivity by factor of 12.6 to 38. The TOF resolution for the TB-J-PET is expected to be at the level of CRT=240 ps (FWHM). For the TB-J-PET with an axial field-of-view (AFOV) of 140 cm, an image quality of the reconstructed images of a NEMA IEC phantom was presented with a contrast recovery coefficient (CRC) and a background variability parameters. The increase of the whole-body sensitivity and NECR estimated for the TB-J-PET with respect to current commercial PET systems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners.
Small animal Positron Emission Tomography (PET) is dedicated to small animal imaging, which requires high position and energy precision, as well as good flexibility and efficiency of the electronics. This paper presents the design of a digital signal processing logic for a marmoset brain PET system based on LYSO crystal arrays, SiPMs, and the resistive network readout method. We implement 32-channel signal processing in a single Xilinx Artix-7 Field-Programmable Gate Array (FPGA). The logic is designed to support four online modes which are regular data processing mode, flood map construction mode, energy spectrum construction mode, and raw data mode. Several functions are integrated, including two-dimensional (2D) raw position calculation, crystal locating, events filtering, and synchronization detection. Furthermore, a series of online corrections is also integrated, such as photon peak correction to 511 keV and time measurement result correction with crystal granularity. A Gigabit Ethernet interface is utilized for data transfer, Look-Up Tables (LUTs) configuration, and command issuing. The pipeline logic works at 125 MHz with a signal processing capability beyond the required data rate of 1,000,000 events/s/channel. A series of initial tests are conducted. The results indicate that the logic design meets the application requirement.
Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly uesd for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processi ng Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 0.3% FWHM and 350 ps FWHM respectively, while the position resolution is better than 0.35% FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا