ترغب بنشر مسار تعليمي؟ اضغط هنا

The benefit of simultaneous seven-filter imaging: 10 years of GROND observations

163   0   0.0 ( 0 )
 نشر من قبل Jochen Greiner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jochen Greiner




اسأل ChatGPT حول البحث

A variety of scientific results have been achieved over the last 10 years with the GROND simultaneous 7-channel imager at the 2.2m telescope of the Max-Planck Society at ESO/La Silla. While designed primarily for rapid observations of gamma-ray burst afterglows, the combination of simultaneous imaging in the Sloan griz and near-infrared JHK bands at a medium-sized (2.2m) telescope and the very flexible scheduling possibility has resulted in an extensive use for many other astrophysical research topics, from exoplanets and accreting binaries to galaxies and quasars.



قيم البحث

اقرأ أيضاً

The Tunka Radio Extension (Tunka-Rex) is a digital antenna array located in the Tunka Valley in Siberia, which measures the radio emission of cosmic-ray air-showers with energies up to EeV. Tunka-Rex is externally triggered by the Tunka-133 air-Chere nkov timing array (during nights) and by the Tunka-Grande array of particle detectors (remaining time). These three arrays comprise the cosmic-ray extension of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA). The configuration and analysis pipeline of Tunka-Rex have significantly changed over its runtime. Density of the antennas was tripled and the pipeline has become more developed forming now sophisticated piece of reconstruction software. During its lifecycle Tunka-Rex has demonstrated that a cost-effective and full duty-cycle radio detector can reconstruct the energy and shower maximum with a precision comparable to optical detectors. Moreover, it was shown that cosmic-ray instruments, that use different detection techniques and are placed in different locations, can be cross-calibrated via their radio extensions. These results show the prospects of application of the radio technique for future large-scale experiments for cosmic-ray and neutrino detection. For the time being Tunka-Rex has ceased active measurements and focuses on the data analysis and publication of corresponding software and data in an open-access data center with online analysis features. In this report we present the current status of the array and give an overview of the results achieved during these years as well as discuss upcoming improvements in instrumentation and data analysis, which can be applied for the future radio arrays.
During the last 10 years, INTEGRAL made a unique contribution to the study of accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14 sources now known of this class. Besides increasing the number of known AMXPs, INTEGRAL also carrie d out observations of these objects above 20 keV, substantially advancing our understanding of their behaviour. We present here a review of all the AMXPs observed with INTEGRAL and discuss the physical interpretation of their behaviour in the X-ray domain. We focus in particular on the lightcurve profile during outburst, as well as the timing, spectral, and thermonuclear type-I X-ray bursts properties.
The Interstellar Boundary Explorer (IBEX) has now operated in space for 7 years and returned nearly continuous observations that have led to scientific discoveries and reshaped our entire understanding of the outer heliosphere and its interaction wit h the local interstellar medium. Here we extend prior work, adding the 2014-2015 data for the first time, and examine, validate, initially analyze, and provide a complete 7-year set of Energetic Neutral Atom (ENA) observations from ~0.1 to 6 keV. The data, maps, and documentation provided here represent the 10th major release of IBEX data and include improvements to various prior corrections to provide the citable reference for the current version of IBEX data. We are now able to study time variations in the outer heliosphere and interstellar interaction over more than half a solar cycle. We find that the Ribbon has evolved differently than the globally distributed flux (GDF), with a leveling off and partial recovery of ENAs from the GDF, owing to solar wind output flattening and recovery. The Ribbon has now also lost its latitudinal ordering, which reflects the breakdown of solar minimum solar wind conditions and exhibits a greater time delay than for the surrounding GDF. Together, the IBEX observations strongly support a secondary ENA source for the Ribbon, and we suggest that this be adopted as the nominal explanation of the Ribbon going forward.
We report on the study of 14 XMM-Newton observations of the magnetar SGR 1806-20 spread over a period of 8 years, starting in 2003 and extending to 2011. We find that in mid 2005, a year and a half after a giant flare (GF), the torques on the star in creased to the largest value yet seen, with a long term average rate between 2005 and 2011 of $lvertdot{ u}rvertapprox1.35times10^{-11}$ Hz s$^{-1}$, an order of magnitude larger than its historical level measured in 1995. The pulse morphology of the source is complex in the observations following the GF, while its pulsed-fraction remained constant at about $7%$ in all observations. Spectrally, the combination of a black-body (BB) and power-law (PL) components is an excellent fit to all observations. The BB and PL fluxes increased by a factor of 2.5 and 4, respectively, while the spectra hardened, in concordance with the 2004 major outburst that preceded the GF. The fluxes decayed exponentially back to quiescence with a characteristic time-scale of $tausim1.5$ yrs, although they did not reach a constant value until at least 3.5 years later (2009). The long-term timing and spectral behavior of the source point to a decoupling between the mechanisms responsible for their respective behavior. We argue that low level seismic activity causing small twists in the open field lines can explain the long lasting large torques on the star, while the spectral behavior is due to a twist imparted onto closed field lines after the 2004 large outburst.
MeV blazars are a sub--population of the blazar family, exhibiting larger--than--average jet powers, accretion luminosities and black hole masses. Because of their extremely hard X--ray continua, these objects are best studied in the X-ray domain. He re, we report on the discovery by the $Fermi$ Large Area Telescope and subsequent follow-up observations with $NuSTAR$, $Swift$ and GROND of a new member of the MeV blazar family: PMN J0641$-$0320. Our optical spectroscopy provides confirmation that this is a flat--spectrum radio quasar located at a redshift of $z=1.196$. Its very hard $NuSTAR$ spectrum (power--law photon index of $sim$1 up to $sim$80 keV) indicates that the emission is produced via inverse Compton scattering off photons coming from outside the jet.The overall spectral energy distribution of PMN J0641$-$0320 is typical of powerful blazars and by reproducing it with a simple one-zone leptonic emission model we find the emission region to be located either inside the broad line region or within the dusty torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا