ﻻ يوجد ملخص باللغة العربية
For an integer $ellgeqslant 2$, the $ell$-component connectivity of a graph $G$, denoted by $kappa_{ell}(G)$, is the minimum number of vertices whose removal from $G$ results in a disconnected graph with at least $ell$ components or a graph with fewer than $ell$ vertices. This is a natural generalization of the classical connectivity of graphs defined in term of the minimum vertex-cut and is a good measure of robustness for the graph corresponding to a network. So far, the exact values of $ell$-connectivity are known only for a few classes of networks and small $ell$s. It has been pointed out in~[Component connectivity of the hypercubes, Int. J. Comput. Math. 89 (2012) 137--145] that determining $ell$-connectivity is still unsolved for most interconnection networks, such as alternating group graphs and star graphs. In this paper, by exploring the combinatorial properties and fault-tolerance of the alternating group graphs $AG_n$ and a variation of the star graphs called split-stars $S_n^2$, we study their $ell$-component connectivities. We obtain the following results: (i) $kappa_3(AG_n)=4n-10$ and $kappa_4(AG_n)=6n-16$ for $ngeqslant 4$, and $kappa_5(AG_n)=8n-24$ for $ngeqslant 5$; (ii) $kappa_3(S_n^2)=4n-8$, $kappa_4(S_n^2)=6n-14$, and $kappa_5(S_n^2)=8n-20$ for $ngeqslant 4$.
The question whether a partition $mathcal{P}$ and a hierarchy $mathcal{H}$ or a tree-like split system $mathfrak{S}$ are compatible naturally arises in a wide range of classification problems. In the setting of phylogenetic trees, one asks whether th
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum num
Connectivity is a central notion of graph theory and plays an important role in graph algorithm design and applications. With emerging new applications in networks, a new type of graph connectivity problem has been getting more attention--hedge conne
The objective of the well-known Towers of Hanoi puzzle is to move a set of disks one at a time from one of a set of pegs to another, while keeping the disks sorted on each peg. We propose an adversarial variation in which the first player forbids a s
Clique-width is a complexity measure of directed as well as undirected graphs. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor re