ﻻ يوجد ملخص باللغة العربية
By combining first-principles simulations including an on-site Coulomb repulsion term and Boltzmann theory, we demonstrate how the interplay of quantum confinement and epitaxial strain allows to selectively design $n$- and $p$-type thermoelectric response in (LaNiO$_3$)$_3$/(LaAlO$_3$)$_1(001)$ superlattices. In particular, varying strain from $-4.9$ to $+2.9%$ tunes the Ni orbital polarization at the interfaces from $-6$ to $+3%$. This is caused by an electron redistribution among Ni $3d_{x^2-y^2}$- and $3d_{z^2}$-derived quantum well states which respond differently to strain. Owing to this charge transfer, the position of emerging cross-plane transport resonances can be tuned relative to the Fermi energy. Already for moderate values of $1.5$ and $2.8%$ compressive strain, the cross-plane Seebeck coefficient reaches $sim -60$ and $+100$ $mu$V/K around room temperature, respectively. This provides a novel mechanism to tailor thermoelectric materials.
The physics of oxide superlattices is considered for pristine (001) multilayers of the band insulators LaAlO3 and SrTiO3 with alternating p and n interfaces. First principles results and a model of capacitor plates offer a simple paradigm to understa
The impact of epitaxial strain on the structural, electronic, and thermoelectric properties of p-type transparent Sr-doped LaCrO3 thin films has been investigated. For this purpose, high-quality fully strained La0.75Sr0.25CrO3 (LSCO) epitaxial thin f
We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec
By introducing a superconducting gap in Weyl- or Dirac semi-metals, the superconducting state inherits the non-trivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena such as non-zero-mo
Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers unique phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching