ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin squeezing and many-body dipolar dynamics in optical lattice clocks

97   0   0.0 ( 0 )
 نشر من قبل Chunlei Qu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent experimental realization of a three-dimensional (3D) optical lattice clock not only reduces the influence of collisional interactions on the clocks accuracy but also provides a promising platform for studying dipolar many-body quantum physics. Here, by solving the governing master equation, we investigate the role of both elastic and dissipative long-range interactions in the clocks dynamics and study its dependence on lattice spacing, dimensionality, and dipolar orientation. For small lattice spacing, i.e., $k_0all 1$, where $a$ is the lattice constant and $k_0$ is the transition wavenumber, a sizable spin squeezing appears in the transient state which is favored in a head-to-tail dipolar configuration in 1D systems and a side-by-side configuration in 2D systems, respectively. For large lattice spacing, i.e., $k_0agg 1$, the single atomic decay rate can be effectively suppressed due to the destructive dissipative emission of neighboring atoms in both 1D and 2D. Our results will not only aid in the design of the future generation of ultraprecise atomic clocks but also illuminates the rich many-body physics exhibited by radiating dipolar system.



قيم البحث

اقرأ أيضاً

418 - Ahmet Keles , Erhai Zhao , 2018
Is there a quantum many-body system that scrambles information as fast as a black hole? The Sachev-Ye-Kitaev model can saturate the conjectured bound for chaos, but it requires random all-to-all couplings of Majorana fermions that are hard to realize in experiments. Here we examine a quantum spin model of randomly oriented dipoles where the spin exchange is governed by dipole-dipole interactions. The model is inspired by recent experiments on dipolar spin systems of magnetic atoms, dipolar molecules, and nitrogen-vacancy centers. We map out the phase diagram of this model by computing the energy level statistics, spectral form factor, and out-of-time-order correlation (OTOC) functions. We find a broad regime of many-body chaos where the energy levels obey Wigner-Dyson statistics and the OTOC shows distinctive behaviors at different times: Its early-time dynamics is characterized by an exponential growth, while the approach to its saturated value at late times obeys a power law. The temperature scaling of the Lyapunov exponent $lambda_L$ shows that while it is well below the conjectured bound $2pi T$ at high temperatures, $lambda_L$ approaches the bound at low temperatures and for large number of spins.
Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local therma l equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the systems energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body maste r equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA 87Sr and NIST 171Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems.
A Bose-Einstein condensate (BEC) of rubidium atoms is prepared in one of two degenerate energy minima in the second Bloch band of an optical square lattice. A subsequent oscillation of the BEC between the two energy minima is observed, which is drive n by two distinct collision processes: the conventional Hubbard-type on-site collision and a collision process that changes the orbital flavor. The oscillation frequency scales with the relative strength of these collisional interactions, which can be readily tuned via an experimentally well controlled distortion of the unit cell. The observations are compared to a quantum model of two single-particle modes and to a semi-classical multi-band tight-binding simulation of 12x12 tubular sites of the lattice. Both models reproduce the observed oscillatory quantum many-body dynamics and show the correct dependence of the oscillation frequency on the ratio between the strengths of the on-site and flavor-changing collision processes.
Ultracold atoms are an ideal platform to study strongly correlated phases of matter in and out of equilibrium. Much of the experimental progress in this field crucially relies on the control of the contact interaction between two atoms. Control of st rong long-range interactions between distant ground state atoms has remained a long standing goal, opening the path towards the study of fundamentally new quantum many-body systems including frustrated or topological magnets and supersolids. Optical dressing of ground state atoms by near-resonant laser coupling to Rydberg states has been proposed as a versatile method to engineer such interactions. However, up to now the great potential of this approach for interaction control in a many-body setting has eluded experimental confirmation. Here we report the realisation of coherent Rydberg-dressing in an ultracold atomic lattice gas and directly probe the induced interaction potential using an interferometric technique with single atom sensitivity. We use this approach to implement a two-dimensional synthetic spin lattice and demonstrate its versatility by tuning the range and anisotropy of the effective spin interactions. Our measurements are in remarkable agreement with exact solutions of the many-body dynamics, providing further evidence for the high degree of accurate interaction control in these systems. Finally, we identify a collective many-body decay process, and discuss possible routes to overcome this current limitation of coherence times. Our work marks the first step towards the use of laser-controlled Rydberg interactions for the study of exotic quantum magnets in optical lattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا