ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating Bayesian Deep Learning Methods for Semantic Segmentation

55   0   0.0 ( 0 )
 نشر من قبل Jishnu Mukhoti
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning has been revolutionary for computer vision and semantic segmentation in particular, with Bayesian Deep Learning (BDL) used to obtain uncertainty maps from deep models when predicting semantic classes. This information is critical when using semantic segmentation for autonomous driving for example. Standard semantic segmentation systems have well-established evaluation metrics. However, with BDLs rising popularity in computer vision we require new metrics to evaluate whether a BDL method produces better uncertainty estimates than another method. In this work we propose three such metrics to evaluate BDL models designed specifically for the task of semantic segmentation. We modify DeepLab-v3+, one of the state-of-the-art deep neural networks, and create its Bayesian counterpart using MC dropout and Concrete dropout as inference techniques. We then compare and test these two inference techniques on the well-known Cityscapes dataset using our suggested metrics. Our results provide new benchmarks for researchers to compare and evaluate their improved uncertainty quantification in pursuit of safer semantic segmentation.



قيم البحث

اقرأ أيضاً

We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embeddi ng model. Our grouping method is based on selecting all points that are sufficiently similar to a set of seed points, chosen from a deep, fully convolutional scoring model. We show competitive results on the Pascal VOC instance segmentation benchmark.
Fruit tree pruning and fruit thinning require a powerful vision system that can provide high resolution segmentation of the fruit trees and their branches. However, recent works only consider the dormant season, where there are minimal occlusions on the branches or fit a polynomial curve to reconstruct branch shape and hence, losing information about branch thickness. In this work, we apply two state-of-the-art supervised learning models U-Net and DeepLabv3, and a conditional Generative Adversarial Network Pix2Pix (with and without the discriminator) to segment partially occluded 2D-open-V apple trees. Binary accuracy, Mean IoU, Boundary F1 score and Occluded branch recall were used to evaluate the performances of the models. DeepLabv3 outperforms the other models at Binary accuracy, Mean IoU and Boundary F1 score, but is surpassed by Pix2Pix (without discriminator) and U-Net in Occluded branch recall. We define two difficulty indices to quantify the difficulty of the task: (1) Occlusion Difficulty Index and (2) Depth Difficulty Index. We analyze the worst 10 images in both difficulty indices by means of Branch Recall and Occluded Branch Recall. U-Net outperforms the other two models in the current metrics. On the other hand, Pix2Pix (without discriminator) provides more information on branch paths, which are not reflected by the metrics. This highlights the need for more specific metrics on recovering occluded information. Furthermore, this shows the usefulness of image-transfer networks for hallucination behind occlusions. Future work is required to further enhance the models to recover more information from occlusions such that this technology can be applied to automating agricultural tasks in a commercial environment.
Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even vi rtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.
Segmentation and analysis of individual pores and grains of mudrocks from scanning electron microscope images is non-trivial because of noise, imaging artifacts, variation in pixel grayscale values across images, and overlaps in grayscale values amon g different physical features such as silt grains, clay grains, and pores in an image, which make their identification difficult. Moreover, because grains and pores often have overlapping grayscale values, direct application of threshold-based segmentation techniques is not sufficient. Recent advances in the field of computer vision have made it easier and faster to segment images and identify multiple occurrences of such features in an image, provided that ground-truth data for training the algorithm is available. Here, we propose a deep learning SEM image segmentation model, MudrockNet based on Googles DeepLab-v3+ architecture implemented with the TensorFlow library. The ground-truth data was obtained from an image-processing workflow applied to scanning electron microscope images of uncemented muds from the Kumano Basin offshore Japan at depths < 1.1 km. The trained deep learning model obtained a pixel-accuracy about 90%, and predictions for the test data obtained a mean intersection over union (IoU) of 0.6591 for silt grains and 0.6642 for pores. We also compared our model with the random forest classifier using trainable Weka segmentation in ImageJ, and it was observed that MudrockNet gave better predictions for both silt grains and pores. The size, concentration, and spatial arrangement of the silt and clay grains can affect the petrophysical properties of a mudrock, and an automated method to accurately identify the different grains and pores in mudrocks can help improve reservoir and seal characterization for petroleum exploration and anthropogenic waste sequestration.
Collecting labeled data for the task of semantic segmentation is expensive and time-consuming, as it requires dense pixel-level annotations. While recent Convolutional Neural Network (CNN) based semantic segmentation approaches have achieved impressi ve results by using large amounts of labeled training data, their performance drops significantly as the amount of labeled data decreases. This happens because deep CNNs trained with the de facto cross-entropy loss can easily overfit to small amounts of labeled data. To address this issue, we propose a simple and effective contrastive learning-based training strategy in which we first pretrain the network using a pixel-wise, label-based contrastive loss, and then fine-tune it using the cross-entropy loss. This approach increases intra-class compactness and inter-class separability, thereby resulting in a better pixel classifier. We demonstrate the effectiveness of the proposed training strategy using the Cityscapes and PASCAL VOC 2012 segmentation datasets. Our results show that pretraining with the proposed contrastive loss results in large performance gains (more than 20% absolute improvement in some settings) when the amount of labeled data is limited. In many settings, the proposed contrastive pretraining strategy, which does not use any additional data, is able to match or outperform the widely-used ImageNet pretraining strategy that uses more than a million additional labeled images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا