ترغب بنشر مسار تعليمي؟ اضغط هنا

Staggered ordered phases in the three-orbital Hubbard model

117   0   0.0 ( 0 )
 نشر من قبل Akihisa Koga
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study ordered phases with broken translational symmetry in the half-filled three-orbital Hubbard model with antiferromagnetic Hund coupling by means of dynamical mean-field theory (DMFT) and continuous-time quantum Monte Carlo simulations. The stability regions of the antiferro-orbital (AFO), antiferro-magnetic (AFM), and charge density wave (CDW) states are determined by measuring the corresponding order parameters. We introduce two symmetrically distinct AFO order parameters and show that these are the primary order parameters in the phase diagram. The CDW and AFM states appear simultaneously with these two types of AFO orders in the weak and strong coupling region, respectively. The DMFT phase diagram is consistent with the results obtained by the Hartree approximation and strong-coupling perturbation theory. In the weak coupling regime, a nontrivial exponent $beta=3/2$ is found for the CDW order parameter, which is related to the coupling between the CDW and AFO orders in the Landau theory characteristic for the three-orbital model. We also demonstrate the existence of a metallic AFO state without any charge disproportions and magnetic orders, which appears only at finite temperatures.

قيم البحث

اقرأ أيضاً

The ground-state phase diagrams of the three-orbital t2g Hubbard model are studied using a Hartree-Fock approximation. First, a complete set of multipolar order parameters for t2g models defined in terms of the effective total angular momentum jeff a re theoretically derived. These order parameters can classify off-diagonal orders between jeff = 1/2 and jeff = 3/2 manifolds. Second, through extensive Hartree-Fock calculations, the ground-state phase diagrams in the space of (1) the onsite Coulomb repulsion U, (2) the spin-orbit coupling (SOC), and (3) the number of electrons are mapped out. A variety of nontrivial quantum phases with jeff-diagonal and jeff-off-diagonal multipole orders are found. Finally, future studies using more numerically expensive methods, such as dynamical mean-field theory are discussed.
255 - Shaozhi Li , Ehsan Khatami , 2017
We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half filling using the dynamical mean field theory. We find that the e-ph interaction, even at weak co uplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph coupling, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hunds coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.
We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction $U$ and small relative electron-phonon coupling strength $lambda$ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large $lambda$ and small $U$ persists out to relatively high doping levels. We study the evolution of the $d$-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of $U$ and $lambda$.
We study the interplay between the electron-phonon (e-ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e-ph i nteractions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e-ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e-ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 12112(R) (2017)] in infinite dimension, suggesting that the competition between the e-ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.
122 - Y. F. Kung , C.-C. Chen , Yao Wang 2016
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially r eside on oxygen orbitals and that the ({pi},{pi}) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا