ترغب بنشر مسار تعليمي؟ اضغط هنا

The Planes The Thing: The Case for Wide-Fast-Deep Coverage of the Galactic Plane and Bulge

73   0   0.0 ( 0 )
 نشر من قبل Jay Strader
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that the exclusion of the Galactic Plane and Bulge from the uniform wide-fast-deep (WFD) LSST survey cadence is fundamentally inconsistent with two of the main science drivers of LSST: Mapping the Milky Way and Exploring the Transient Optical Sky. We outline the philosophical basis for this claim and then describe a number of important science goals that can only be addressed by WFD-like coverage of the Plane and Bulge.


قيم البحث

اقرأ أيضاً

One of the aims of LSST is to perform a systematic survey of star clusters and star forming regions (SFRs) in our Galaxy. In particular, the observations obtained with LSST will make a big difference in Galactic regions that have been poorly studied in the past, such as the anticenter and the disk beyond the Galactic center, and they will have a strong impact in discovering new distant SFRs. These results can be achieved by exploiting the exquisite depth that will be attained if the wide-fast-deep (WFD) observing strategy of the main survey is also adopted for the Galactic plane, in the g, r, and i filters.
We present new UV-to-IR stellar photometry of four low-extinction windows in the Galactic bulge, obtained with the Wide Field Camera 3 on the Hubble Space Telescope (HST). Using our five bandpasses, we have defined reddening-free photometric indices sensitive to stellar effective temperature and metallicity. We find that the bulge populations resemble those formed via classical dissipative collapse: each field is dominated by an old (~10 Gyr) population exhibiting a wide metallicity range (-1.5 < [Fe/H] < 0.5). We detect a metallicity gradient in the bulge population, with the fraction of stars at super-solar metallicities dropping from 41% to 35% over distances from the Galactic center ranging from 0.3 to 1.2 kpc. One field includes candidate exoplanet hosts discovered in the SWEEPS HST transit survey. Our measurements for 11 of these hosts demonstrate that exoplanets in the distinct bulge environment are preferentially found around high-metallicity stars, as in the solar neighborhood, supporting the view that planets form more readily in metal-rich environments.
The GALANTE optical photometric survey is observing the northern Galactic plane and some adjacent regions using seven narrow- and intermediate-filters, covering a total of 1618 square degrees. The survey has been designed with multiple exposure times and at least two different air masses per field to maximize its photometric dynamic range, comparable to that of Gaia, and ensure the accuracy of its photometric calibration. The goal is to reach at least 1% accuracy and precision in the seven bands for all stars brighter than AB magnitude 17 while detecting fainter stars with lower values of the signal-to-noise ratio.The main purposes of GALANTE are the identification and study of extinguished O+B+WR stars, the derivation of their extinction characteristics, and the cataloguing of F and G stars in the solar neighbourhood. Its data will be also used for a variety of other stellar studies and to generate a high-resolution continuum-free map of the H{alpha} emission in the Galactic plane. We describe the techniques and the pipeline that are being used to process the data, including the basis of an innovative calibration system based on Gaia DR2 and 2MASS photometry.
153 - S. Riggi , G. Umana , C. Trigilio 2021
We present observations of a region of the Galactic plane taken during the Early Science Program of the Australian Square Kilometre Array Pathfinder (ASKAP). In this context, we observed the SCORPIO field at 912 MHz with an uncompleted array consisti ng of 15 commissioned antennas. The resulting map covers a square region of ~40 deg^2, centred on (l, b)=(343.5{deg}, 0.75{deg}), with a synthesized beam of 24x21 and a background rms noise of 150-200 {mu}Jy/beam, increasing to 500-600 {mu}Jy/beam close to the Galactic plane. A total of 3963 radio sources were detected and characterized in the field using the CAESAR source finder. We obtained differential source counts in agreement with previously published data after correction for source extraction and characterization uncertainties, estimated from simulated data. The ASKAP positional and flux density scale accuracy were also investigated through comparison with previous surveys (MGPS, NVSS) and additional observations of the SCORPIO field, carried out with ATCA at 2.1 GHz and 10 spatial resolution. These allowed us to obtain a measurement of the spectral index for a subset of the catalogued sources and an estimated fraction of (at least) 8% of resolved sources in the reported catalogue. We cross-matched our catalogued sources with different astronomical databases to search for possible counterparts, finding ~150 associations to known Galactic objects. Finally, we explored a multiparametric approach for classifying previously unreported Galactic sources based on their radio-infrared colors.
Searches for gravitational microlensing events are traditionally concentrated on the central regions of the Galactic bulge but many microlensing events are expected to occur in the Galactic plane, far from the Galactic Center. Owing to the difficulty in conducting high-cadence observations of the Galactic plane over its vast area, which are necessary for the detection of microlensing events, their global properties were hitherto unknown. Here, we present results of the first comprehensive search for microlensing events in the Galactic plane. We searched an area of almost 3000 square degrees along the Galactic plane (|b|<7, 0<l<50, 190<l<360 deg) observed by the Optical Gravitational Lensing Experiment (OGLE) during 2013-2019 and detected 630 events. We demonstrate that the mean Einstein timescales of Galactic plane microlensing events are on average three times longer than those of Galactic bulge events, with little dependence on the Galactic longitude. We also measure the microlensing optical depth and event rate as a function of Galactic longitude and demonstrate that they exponentially decrease with the angular distance from the Galactic Center (with the characteristic angular scale length of 32 deg). The average optical depth decreases from $0.5times 10^{-6}$ at l=10 deg to $1.5times 10^{-8}$ in the Galactic anticenter. We also find that the optical depth in the longitude range 240<l<330 deg is asymmetric about the Galactic equator, which we interpret as a signature of the Galactic warp.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا