ﻻ يوجد ملخص باللغة العربية
Calculations of high multiplicity Higgs amplitudes exhibit a rapid growth that may signal an end of perturbative behavior or even the need for new physics phenomena. As a step towards this problem we consider the quantum mechanical equivalent of $1 to n$ scattering amplitudes in a spontaneously broken $phi^4$-theory by extending our previous results on the quartic oscillator with a single minimum to transitions $langle n lvert hat{x} rvert 0 rangle$ in the symmetric double-well potential with quartic coupling $lambda$. Using recursive techniques to high order in perturbation theory, we argue that these transitions are of exponential form $langle n lvert hat{x} rvert 0 rangle sim exp left( F (lambda n) / lambda right)$ in the limit of large $n$ and $lambda n$ fixed. We apply the methods of exact perturbation theory put forward by Serone et al. to obtain the exponent $F$ and investigate its structure in the regime where tree-level perturbation theory violates unitarity constraints. We find that the resummed exponent is in agreement with unitarity and rigorous bounds derived by Bachas.
Calculations of $1to N$ amplitudes in scalar field theories at very high multiplicities exhibit an extremely rapid growth with the number $N$ of final state particles. This either indicates an end of perturbative behaviour, or possibly even a breakdo
We perform a comprehensive study of on-shell recursion relations for Born amplitudes in spontaneously broken gauge theories and identify the minimal shifts required to construct amplitudes with a given particle content and spin quantum numbers. We sh
We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously and apply this idea to the Standard Model (SM). We compute the quantum corrections to the potential of the higgs field ($phi$) in the classically s
The rational parts of 5-gluon one-loop amplitudes are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We found complete agreement with the previously well-known results of Bern, Dixon and
The rational parts of 6-gluon one-loop amplitudes with scalars circulating in the loop are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We present the analytic results for the two MHV