ترغب بنشر مسار تعليمي؟ اضغط هنا

Storage ring mass spectrometry for nuclear structure and astrophysics research

75   0   0.0 ( 0 )
 نشر من قبل Yuri Litvinov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at which experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.



قيم البحث

اقرأ أيضاً

191 - J. Ketelaer , J. Kramer , D. Beck 2008
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam li ne for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. This publication describes the experimental setup as well as its present status.
82 - Robert von Hahn 2016
An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $pm$ 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion) and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm$^{-3}$ is derived, equivalent to a room-temperature pressure below 10$^{-14}$ mbar. Fast atomic, molecular and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.
103 - J. H. Liu , X. Xu , P. Zhang 2019
Isochronous Mass Spectrometry (IMS) in heavy-ion storage rings is an excellent experimental method for precision mass measurements of exotic nuclei. In the IMS, the storage ring is tuned in a special isochronous ion-optical mode. Thus, the mass-over- charge ratios of the stored ions are directly reflected by their respective revolution times in first order. However, the inevitable momentum spread of secondary ions increases the peak widths in the measured spectra and consequently limits the achieved mass precision. In order to achieve a higher mass resolving power, the ring aperture was reduced to 60 mm by applying a mechanical slit system at the dispersive straight section. The momentum acceptance was reduced as well as better isochronous conditions were achieved. The results showed a significant improvement of the mass resolving power reaching $5.2 times 10^{5}$, though at the cost of about 40% ion loss.
159 - Gerhard Baur , 2003
Coulomb dissociation is an especially simple and important reaction mechanism. Since the perturbation due to the electric field of the (target) nucleus is exactly known, firm conclusions can be drawn from such measurements. Electromagnetic matrixelem ents and astrophysical S-factors for radiative capture processes can be extracted from experiments. We describe the basic elements of the theory of nonrelativistic and relativistic electromagnetic excitation with heavy ions. This is contrasted to electromagnetic excitation with leptons (electrons), with their small electric charge and the absence of strong interactions. We discuss various approaches to the study of higher order electromagnetic effects and how these effects depend on the basic parameters of the experiment. The dissociation of neutron halo nuclei is studied in a zero range model using analytical methods. We also review ways how to treat nuclear interactions, show their characteristics and how to avoid them (as far as possible). We review the experimental results from a theoretical point of view. Of special interest for nuclear structure physics is the appearence of low lying electric dipole strength in neutron rich nuclei. Applications of Coulomb dissociation to some selected radiative capture reactions relevant for nuclear astrophysics are discussed. The Coulomb dissociation of 8B is relevant for the solar neutrino problem. The potential of the method especially for future investigations of (medium) heavy exotic nuclei for nuclear structure and astrophysics is explored. We conclude that the Coulomb dissociation mechanism is theoretically well understood, the potential difficulties are identified and can be taken care of. Many interesting experiments have been done in this field and many more are expected in the future.
A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا