ﻻ يوجد ملخص باللغة العربية
This paper presents a novel semantic scene change detection scheme with only weak supervision. A straightforward approach for this task is to train a semantic change detection network directly from a large-scale dataset in an end-to-end manner. However, a specific dataset for this task, which is usually labor-intensive and time-consuming, becomes indispensable. To avoid this problem, we propose to train this kind of network from existing datasets by dividing this task into change detection and semantic extraction. On the other hand, the difference in camera viewpoints, for example, images of the same scene captured from a vehicle-mounted camera at different time points, usually brings a challenge to the change detection task. To address this challenge, we propose a new siamese network structure with the introduction of correlation layer. In addition, we create a publicly available dataset for semantic change detection to evaluate the proposed method. The experimental results verified both the robustness to viewpoint difference in change detection task and the effectiveness for semantic change detection of the proposed networks. Our code and dataset are available at https://github.com/xdspacelab/sscdnet.
Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG
Existing weakly supervised semantic segmentation (WSSS) methods usually utilize the results of pre-trained saliency detection (SD) models without explicitly modeling the connections between the two tasks, which is not the most efficient configuration
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, whi
We propose a data-driven scene flow estimation algorithm exploiting the observation that many 3D scenes can be explained by a collection of agents moving as rigid bodies. At the core of our method lies a deep architecture able to reason at the textbf