ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient spin transport in a paramagnetic insulator

139   0   0.0 ( 0 )
 نشر من قبل Koichi Oyanagi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of new materials that efficiently transmit spin currents has been important for spintronics and material science. The electric insulator $mathrm{Gd}_3mathrm{Ga}_5mathrm{O}_{12}$ (GGG) is a superior substrate for growing magnetic films, but has never been considered as a conduit for spin currents. Here we report spin current propagation in paramagnetic GGG over several microns. Surprisingly, the spin transport persists up to temperatures of 100 K $gg$ $T_{mathrm{g}} = 180$ mK, GGGs magnetic glass-like transition temperature. At 5 K we find a spin diffusion length ${lambda_{mathrm{GGG}}} = 1.8 pm 0.2 {mu}$m and a spin conductivity ${sigma}_{mathrm{GGG}} = (7.3 pm 0.3) times10^4$ $mathrm{Sm}^{-1}$ that is larger than that of the record quality magnet $mathrm{Y}_3mathrm{Fe}_5mathrm{O}_{12}$ (YIG). We conclude that exchange coupling is not required for efficient spin transport, which challenges conventional models and provides new material-design strategies for spintronic devices.

قيم البحث

اقرأ أيضاً

Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense r esearch, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 {mu}m. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.
Spin Hall magnetoresistance (SMR) refers to a resistance change in a metallic film reflecting the magnetization direction of a magnet attached to the film. The mechanism of this phenomenon is spin exchange between conduction-electron spins and magnet ization at the interface. SMR has been used to read out information written in a small magnet and to detect magnetization dynamics, but it has been limited to magnets; magnetic ordered phases or instability of magnetic phase transition has been believed to be indispensable. Here, we report the observation of SMR in a paramagnetic insulator Gd$_{3}$Ga$_{5}$O$_{12}$ (GGG) without spontaneous magnetization combined with a Pt film. The paramagnetic SMR can be attributed to spin-transfer torque acting on localized spins in GGG. We determine the efficiencies of spin torque and spin-flip scattering at the Pt/GGG interface, and demonstrate these quantities can be tuned with external magnetic fields. The results clarify the mechanism of spin-transport at a metal/paramagnetic insulator interface, which gives new insight into the spintronic manipulation of spin states in paramagnetic systems.
The intrinsic antiferromagnetic topological insulator MnBi2Te4 provides a versatile platform for exploring exotic topological phenomena. In this work, we report nonlocal transport studies of exfoliated MnBi2Te4 flakes in the axion insulator state. We observe pronounced nonlocal transport signals in six septuple-layer thick MnBi2Te4 devices within the axion insulator regime at low magnetic fields. As a magnetic field drives the axion insulator into the Chern insulator, the nonlocal resistance almost vanishes due to the dissipationless nature of the chiral edge state. Our nonlocal transport measurements provide strong evidence that the charge transport in the axion insulator state is carried by the half-quantized helical edge state that is proposed to appear at the hinges of the top and bottom surfaces.
Topological spintronics aims to exploit the spin-momentum locking in the helical surface states of topological insulators for spin-orbit torque devices. We address a fundamental question that still remains unresolved in this context: does the topolog ical surface state alone produce the largest values of spin-charge conversion efficiency or can the strongly spin-orbit coupled bulk states also contribute significantly? By studying the Fermi level dependence of spin pumping in topological insulator/ferrimagnetic insulator bilayers, we show that the spin Hall conductivity is constant when the Fermi level is tuned across the bulk band gap, consistent with a full bulk band calculation. The results suggest a new perspective, wherein bulk-surface correspondence allows spin-charge conversion to be simultaneously viewed either as coming from the full bulk band, or from spin-momentum locking of the surface state.
Recently discovered materials called three-dimensional topological insulators constitute examples of symmetry protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-ma gnetic bulk insulators is the protected metallic electronic states confined to the materials surfaces. Electrons in these surface states are spin polarized with their spins governed by their direction of travel (linear momentum), resulting in a helical spin texture in momentum space. Spin- and angle-resolved photoemission spectroscopy (spin-ARPES) has been the only tool capable of directly observing this central feature with simultaneous energy, momentum, and spin sensitivity. By using an innovative photoelectron spectrometer with a high-flux laser-based light source, we discovered another surprising property of these surface electrons which behave like Dirac fermions. We found that the spin polarization of the resulting photoelectrons can be fully manipulated in all three dimensions through selection of the light polarization. These surprising effects are due to the spin-dependent interaction of the helical Dirac fermions with light, which originates from the strong spin-orbit coupling in the material. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from the spin state of electrons in the originating initial states. The results also provide the basis for a novel source of highly spin-polarized electrons with tunable polarization in three dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا