ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusion and mixing in fluid flow via the resolvent estimate

51   0   0.0 ( 0 )
 نشر من قبل Dongyi Wei a
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Dongyi Wei




اسأل ChatGPT حول البحث

In this paper, we first present a Gearhardt-Pruss type theorem with a sharp bound for m-accretive operators. Then we give two applications: (1) give a simple proof of the result proved by Constantin et al. on relaxation enhancement induced by incompressible flows; (2) show that shear flows with a class of Weierstrass functions obey logarithmically fast dissipation time-scales.



قيم البحث

اقرأ أيضاً

This article addresses mixing and diffusion properties of passive scalars advected by rough ($C^alpha$) shear flows. We show that in general, one cannot expect a rough shear flow to increase the rate of inviscid mixing to more than that of a smooth s hear without critical points. On the other hand, diffusion may be enhanced at a much faster rate. This shows that in the setting of low regularity, the interplay between inviscid mixing properties and enhanced dissipation is more intricate, and in fact contradicts some of the natural heuristics that are valid in the smooth setting.
A new kind of Lagrangian diagnostic family is proposed and a specific form of it is suggested for characterizing mixing: the maximal extent of a trajectory (MET). It enables the detection of coherent structures and their dynamics in two- (and potenti ally three-) dimensional unsteady flows in both bounded and open domains. Its computation is much easier than all other Lagrangian diagnostics known to us and provides new insights regarding the mixing properties on both short and long time scales and on both spatial plots and distribution diagrams. We demonstrate its applicability to two dimensional flows using two toy models and a data set of surface currents from the Mediterranean Sea.
189 - Thomas Eiter 2021
Consider the resolvent problem associated with the linearized viscous flow around a rotating body. Within a setting of classical Sobolev spaces, this problem is not well posed on the whole imaginary axis. Therefore, a framework of homogeneous Sobolev spaces is introduced where existence of a unique solution can be guaranteed for every purely imaginary resolvent parameter. For this purpose, the problem is reduced to an auxiliary problem, which is studied by means of Fourier analytic tools in a group setting. In the end, uniform resolvent estimates can be derived, which lead to the existence of solutions to the associated time-periodic linear problem.
In this paper, we study the asymptotic estimate of solution for a mixed-order time-fractional diffusion equation in a bounded domain subject to the homogeneous Dirichlet boundary condition. Firstly, the unique existence and regularity estimates of so lution to the initial-boundary value problem are considered. Then combined with some important properties, including a maximum principle for a time-fractional ordinary equation and a coercivity inequality for fractional derivatives, the energy method shows that the decay in time of the solution is dominated by the term $t^{-alpha}$ as $ttoinfty$.
We exploit a two-dimensional model [7], [6] and [1] describing the elastic behavior of the wall of a flexible blood vessel which takes interaction with surrounding muscle tissue and the 3D fluid flow into account. We study time periodic flows in a cy linder with such compound boundary conditions. The main result is that solutions of this problem do not depend on the period and they are nothing else but the time independent Poiseuille flow. Similar solutions of the Stokes equations for the rigid wall (the no-slip boundary condition) depend on the period and their profile depends on time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا