ﻻ يوجد ملخص باللغة العربية
Cryptography with quantum states exhibits a number of surprising and counterintuitive features. In a 2002 work, Barnum et al. argue that these features imply that digital signatures for quantum states are impossible (Barnum et al., FOCS 2002). In this work, we ask: can all forms of signing quantum data, even in a possibly weak sense, be completely ruled out? We give two results which shed significant light on this basic question. First, we prove an impossibility result for digital signatures for quantum data, which extends the result of Barnum et al. Specifically, we show that no nontrivial combination of correctness and security requirements can be fulfilled, beyond what is achievable simply by measuring the quantum message and then signing the outcome. In other words, only classical signature schemes exist. We then show a positive result: a quantum state can be signed with the same security guarantees as classically, provided that it is also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior performance to encypt-then-sign. Quantumly, it is far more interesting: it is the only signing method available. We develop as-strong-as-classical security definitions for quantum signcryption and give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to upgrade a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and CCA security.
Although it is often believed that the coldness of space is ideally suited for performing measurements at cryogenic temperatures, this must be regarded with caution for two reasons: Firstly, the sensitive instrument must be completely shielded from t
Recently, the object detection based on deep learning has proven to be vulnerable to adversarial patch attacks. The attackers holding a specially crafted patch can hide themselves from the state-of-the-art person detectors, e.g., YOLO, even in the ph
We demonstrate that the ability to estimate the relative sign of an arbitrary $n$-qubit quantum state (with real amplitudes), given only $k$ copies of that state, would yield a $kn$-query algorithm for unstructured search. Thus the quantum sample com
This short note is the result of a French Hippocampe internship that aims at introducing the world of research to young undergraduate French students. The problem studied is the following: imagine yourself locked in a cage barred with $n$ different l
We address the problem of which planar sets can be drawn with a pencil and eraser. The pencil draws any union of black open unit disks in the plane $mathbb{R}^2$. The eraser produces any union of white open unit disks. You may switch tools as many ti