ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origins of the Circumgalactic Medium in the FIRE Simulations

196   0   0.0 ( 0 )
 نشر من قبل Zachary Hafen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Hafen




اسأل ChatGPT حول البحث

We use a particle tracking analysis to study the origins of the circumgalactic medium (CGM), separating it into (1) accretion from the intergalactic medium (IGM), (2) wind from the central galaxy, and (3) gas ejected from other galaxies. Our sample consists of 21 FIRE-2 simulations, spanning the halo mass range log(Mh/Msun) ~ 10-12 , and we focus on z=0.25 and z=2. Owing to strong stellar feedback, only ~L* halos retain a baryon mass >~50% of their cosmic budget. Metals are more efficiently retained by halos, with a retention fraction >~50%. Across all masses and redshifts analyzed >~60% of the CGM mass originates as IGM accretion (some of which is associated with infalling halos). Overall, the second most important contribution is wind from the central galaxy, though gas ejected or stripped from satellites can contribute a comparable mass in ~L* halos. Gas can persist in the CGM for billions of years, resulting in well-mixed halo gas. Sight lines through the CGM are therefore likely to intersect gas of multiple origins. For low-redshift ~L* halos, cool gas (T<10^4.7 K) is distributed on average preferentially along the galaxy plane, however with strong halo-to-halo variability. The metallicity of IGM accretion is systematically lower than the metallicity of winds (typically by >~1 dex), although CGM and IGM metallicities depend significantly on the treatment of subgrid metal diffusion. Our results highlight the multiple physical mechanisms that contribute to the CGM and will inform observational efforts to develop a cohesive picture.



قيم البحث

اقرأ أيضاً

We analyze the different fates of the circumgalactic medium (CGM) in FIRE-2 cosmological simulations, focusing on the redshifts z=0.25 and z=2 representative of recent surveys. Our analysis includes 21 zoom-in simulations covering the halo mass range Mh(z=0) ~ 10^10 - 10^12 Msun. We analyze both where the gas ends up after first leaving the CGM (its proximate fate), as well as its location at z=0 (its ultimate fate). Of the CGM at z=2, about half is found in the ISM or stars of the central galaxy by z=0 in Mh(z=2) ~ 5e11 Msun halos, but most of the CGM in lower-mass halos ends up in the IGM. This is so even though most of the CGM in M_h(z=2) ~ 5e10 Msun halos first accretes onto the central galaxy before being ejected into the IGM. On the other hand, most of the CGM mass at z=0.25 remains in the CGM by z=0 at all halo masses analyzed. Of the CGM gas that subsequently accretes onto the central galaxy in the progenitors of Mh(z=0) ~10^12 Msun halos, most of it is cool (T~10^4 K) at z=2 but hot (~Tvir) at z=0.25, consistent with the expected transition from cold mode to hot mode accretion. Despite the transition in accretion mode, at both z=0.25 and z=2 >~80% of the cool gas in Mh >~ 10^11 Msun halos will accrete onto a galaxy. We find that the metallicity of CGM gas is typically a poor predictor of both its proximate and ultimate fates. This is because there is in general little correlation between the origin of CGM gas and its fate owing to substantial mixing while in the CGM.
In massive objects, such as galaxy clusters, the turbulent velocity dispersion, $sigma_mathrm{turb}$, is tightly correlated to both the object mass, $M$, and the thermal energy. Here, we investigate whether these scaling laws extend to lower-mass obj ects in dark-matter filaments. We perform a cosmological zoom-in simulation of a filament using an adaptive filtering technique for the resolved velocity component and a subgrid-scale model to account for the unresolved component. We then compute the mean turbulent and thermal energies for all halos in the zoom-in region and compare different definitions of halo averages. Averaging constrained by density and temperature thresholds is favored over averages solely based on virial spheres. We find no clear trend for the turbulent velocity dispersion versus halo mass, but significant correlation and a scaling law with exponent $alphasim 0.5$ between the turbulent velocity dispersion and thermal energy that agrees with a nearly constant turbulent Mach number, similar to more massive objects. We conclude that the self-similar energetics proposed for galaxy clusters extends down to the CGM of individual galaxies.
We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass halos hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, an isotropic streaming and diffusion along magnetic field lines, collisional and streaming losses, with constant parallel diffusivity $kappasim3times10^{29},mathrm{cm^2 s^{-1}}$ chosen to match $gamma$-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass halos at $zlesssim 1-2$. The gas in these CR-dominated halos differs significantly from runs without CRs: the gas is primarily cool (a few $sim10^{4},$K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the low and mid ions in this diffuse cool gas is dominated by photo-ionization, with O VI columns $gtrsim 10^{14.5},mathrm{cm^{-2}}$ at distances $gtrsim 150,mathrm{kpc}$. CR and thermal gas pressure are locally anti-correlated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same halos are primarily warm/hot ($Tgtrsim 10^{5},$K) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.
We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range $M_{rm halo} sim 10^{10} - 10^{13} M_{odot}$. By tracing cosmic inflows, galactic outflows, gas recycling, and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fueled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxys evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously under-appreciated growth mode. By $z=0$, wind transfer, i.e. the exchange of gas between galaxies via winds, can dominate gas accretion onto $sim L^{*}$ galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete >50% of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of timescales, with median recycling times ($sim 100-350$ Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxys stellar component.
282 - Jiang-Tao Li 2018
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these missing baryons may be stored in a hot tenuous circum-galactic medium (CGM) aro und massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev-Zeldovich (SZ) signal claimed that $sim(1-50)%$ of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%-20% of the virial radius). Here we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of $approx 200rm~kpc$ (or $approx130rm~kpc$ above the 1~$sigma$ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for $(8pm4)%$ of the baryonic mass expected for the halos. Including the stars, the baryon fraction is $(27pm16)%$, or $(39pm20)%$ by assuming a flattened density profile at $rgtrsim130rm~kpc$. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the missing baryons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا