ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK

95   0   0.0 ( 0 )
 نشر من قبل Ivan Fernandez-Val
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a distribution regression model under endogenous sample selection. This model is a semiparametric generalization of the Heckman selection model that accommodates much richer patterns of heterogeneity in the selection process and effect of the covariates. The model applies to continuous, discrete and mixed outcomes. We study the identification of the model, and develop a computationally attractive two-step method to estimate the model parameters, where the first step is a probit regression for the selection equation and the second step consists of multiple distribution regressions with selection corrections for the outcome equation. We construct estimators of functionals of interest such as actual and counterfactual distributions of latent and observed outcomes via plug-in rule. We derive functional central limit theorems for all the estimators and show the validity of multiplier bootstrap to carry out functional inference. We apply the methods to wage decompositions in the UK using new data. Here we decompose the difference between the male and female wage distributions into four effects: composition, wage structure, selection structure and selection sorting. After controlling for endogenous employment selection, we still find substantial gender wage gap -- ranging from 21% to 40% throughout the (latent) offered wage distribution that is not explained by observable labor market characteristics. We also uncover positive sorting for single men and negative sorting for married women that accounts for a substantive fraction of the gender wage gap at the top of the distribution. These findings can be interpreted as evidence of assortative matching in the marriage market and glass-ceiling in the labor market.



قيم البحث

اقرأ أيضاً

We consider identification and estimation of nonseparable sample selection models with censored selection rules. We employ a control function approach and discuss different objects of interest based on (1) local effects conditional on the control fun ction, and (2) global effects obtained from integration over ranges of values of the control function. We derive the conditions for the identification of these different objects and suggest strategies for estimation. Moreover, we provide the associated asymptotic theory. These strategies are illustrated in an empirical investigation of the determinants of female wages in the United Kingdom.
We develop a novel method of constructing confidence bands for nonparametric regression functions under shape constraints. This method can be implemented via a linear programming, and it is thus computationally appealing. We illustrate a usage of our proposed method with an application to the regression kink design (RKD). Econometric analyses based on the RKD often suffer from wide confidence intervals due to slow convergence rates of nonparametric derivative estimators. We demonstrate that economic models and structures motivate shape restrictions, which in turn contribute to shrinking the confidence interval for an analysis of the causal effects of unemployment insurance benefits on unemployment durations.
Dynamic model averaging (DMA) combines the forecasts of a large number of dynamic linear models (DLMs) to predict the future value of a time series. The performance of DMA critically depends on the appropriate choice of two forgetting factors. The fi rst of these controls the speed of adaptation of the coefficient vector of each DLM, while the second enables time variation in the model averaging stage. In this paper we develop a novel, adaptive dynamic model averaging (ADMA) methodology. The proposed methodology employs a stochastic optimisation algorithm that sequentially updates the forgetting factor of each DLM, and uses a state-of-the-art non-parametric model combination algorithm from the prediction with expert advice literature, which offers finite-time performance guarantees. An empirical application to quarterly UK house price data suggests that ADMA produces more accurate forecasts than the benchmark autoregressive model, as well as competing DMA specifications.
153 - Yicong Lin , Hanno Reuvers 2019
This paper develops the asymptotic theory of a Fully Modified Generalized Least Squares estimator for multivariate cointegrating polynomial regressions. Such regressions allow for deterministic trends, stochastic trends and integer powers of stochast ic trends to enter the cointegrating relations. Our fully modified estimator incorporates: (1) the direct estimation of the inverse autocovariance matrix of the multidimensional errors, and (2) second order bias corrections. The resulting estimator has the intuitive interpretation of applying a weighted least squares objective function to filtered data series. Moreover, the required second order bias corrections are convenient byproducts of our approach and lead to standard asymptotic inference. We also study several multivariate KPSS-type of tests for the null of cointegration. A comprehensive simulation study shows good performance of the FM-GLS estimator and the related tests. As a practical illustration, we reinvestigate the Environmental Kuznets Curve (EKC) hypothesis for six early industrialized countries as in Wagner et al. (2020).
We propose a generalization of the linear panel quantile regression model to accommodate both textit{sparse} and textit{dense} parts: sparse means while the number of covariates available is large, potentially only a much smaller number of them have a nonzero impact on each conditional quantile of the response variable; while the dense part is represent by a low-rank matrix that can be approximated by latent factors and their loadings. Such a structure poses problems for traditional sparse estimators, such as the $ell_1$-penalised Quantile Regression, and for traditional latent factor estimator, such as PCA. We propose a new estimation procedure, based on the ADMM algorithm, consists of combining the quantile loss function with $ell_1$ textit{and} nuclear norm regularization. We show, under general conditions, that our estimator can consistently estimate both the nonzero coefficients of the covariates and the latent low-rank matrix. Our proposed model has a Characteristics + Latent Factors Asset Pricing Model interpretation: we apply our model and estimator with a large-dimensional panel of financial data and find that (i) characteristics have sparser predictive power once latent factors were controlled (ii) the factors and coefficients at upper and lower quantiles are different from the median.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا