ترغب بنشر مسار تعليمي؟ اضغط هنا

The Untold Secrets of Operational Wi-Fi Calling Services: Vulnerabilities, Attacks, and Countermeasures

170   0   0.0 ( 0 )
 نشر من قبل Tian Xie
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Since 2016, all of four major U.S. operators have rolled out nationwide Wi-Fi calling services. They are projected to surpass VoLTE (Voice over LTE) and other VoIP services in terms of mobile IP voice usage minutes in 2018. They enable mobile users to place cellular calls over Wi-Fi networks based on the 3GPP IMS (IP Multimedia Subsystem) technology. Compared with conventional cellular voice solutions, the major difference lies in that their traffic traverses untrustful Wi-Fi networks and the Internet. This exposure to insecure networks may cause the Wi-Fi calling users to suffer from security threats. Its security mechanisms are similar to the VoLTE, because both of them are supported by the IMS. They include SIM-based security, 3GPP AKA (Authentication and Key Agreement), IPSec (Internet Protocol Security), etc. However, are they sufficient to secure Wi-Fi calling services? Unfortunately, our study yields a negative answer. We conduct the first study of exploring security issues of the operational Wi-Fi calling services in three major U.S. operators networks using commodity devices. We disclose that current Wi-Fi calling security is not bullet-proof and uncover four vulnerabilities which stem from improper standard designs, device implementation issues and network operation slips. By exploiting the vulnerabilities, together with several state-of-the-art computer visual recognition technologies, we devise two proof-of-concept attacks: user privacy leakage and telephony harassment or denial of voice service (THDoS); both of them can bypass the security defenses deployed on mobile devices and the network infrastructure. We have confirmed their feasibility and simplicity using real-world experiments, as well as assessed their potential damages and proposed recommended solutions.



قيم البحث

اقرأ أيضاً

We unveil the existence of a vulnerability in Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascad ing DoS attacks can congest an entire network and do not require the adversary to violate any protocol. We demonstrate the feasibility of such attacks through experiments with real Wi-Fi cards, extensive ns-3 simulations, and theoretical analysis. The simulations show that the attack is effective both in networks operating under fixed and varying bit rates, as well as ad hoc and infrastructure modes. To gain insight into the root-causes of the attack, we model the network as a dynamical system and analyze its limiting behavior. The model predicts that a phase transition (and hence a cascading attack) is possible when the retry limit parameter of Wi-Fi is greater or equal to 7, and explicitly characterizes the phase transition region in terms of the system parameters.
Increasing numbers of mobile computing devices, user-portable, or embedded in vehicles, cargo containers, or the physical space, need to be aware of their location in order to provide a wide range of commercial services. Most often, mobile devices ob tain their own location with the help of Global Navigation Satellite Systems (GNSS), integrating, for example, a Global Positioning System (GPS) receiver. Nonetheless, an adversary can compromise location-aware applications by attacking the GNSS-based positioning: It can forge navigation messages and mislead the receiver into calculating a fake location. In this paper, we analyze this vulnerability and propose and evaluate the effectiveness of countermeasures. First, we consider replay attacks, which can be effective even in the presence of future cryptographic GNSS protection mechanisms. Then, we propose and analyze methods that allow GNSS receivers to detect the reception of signals generated by an adversary, and then reject fake locations calculated because of the attack. We consider three diverse defense mechanisms, all based on knowledge, in particular, own location, time, and Doppler shift, receivers can obtain prior to the onset of an attack. We find that inertial mechanisms that estimate location can be defeated relatively easy. This is equally true for the mechanism that relies on clock readings from off-the-shelf devices; as a result, highly stable clocks could be needed. On the other hand, our Doppler Shift Test can be effective without any specialized hardware, and it can be applied to existing devices.
We systematize software side-channel attacks with a focus on vulnerabilities and countermeasures in the cryptographic implementations. Particularly, we survey past research literature to categorize vulnerable implementations, and identify common stra tegies to eliminate them. We then evaluate popular libraries and applications, quantitatively measuring and comparing the vulnerability severity, response time and coverage. Based on these characterizations and evaluations, we offer some insights for side-channel researchers, cryptographic software developers and users. We hope our study can inspire the side-channel research community to discover new vulnerabilities, and more importantly, to fortify applications against them.
Exploitation of heap vulnerabilities has been on the rise, leading to many devastating attacks. Conventional heap patch generation is a lengthy procedure, requiring intensive manual efforts. Worse, fresh patches tend to harm system dependability, hen ce deterring users from deploying them. We propose a heap patching system that simultaneously has the following prominent advantages: (1) generating patches without manual efforts; (2) installing patches without altering the code (so called code-less patching); (3) handling various heap vulnerability types; (4) imposing a very low overhead; and (5) no dependency on specific heap allocators. As a separate contribution, we propose targeted calling context encoding, which is a suite of algorithms for optimizing calling context encoding, an important technique with applications in many areas. The system properly combines heavyweight offline attack analysis with lightweight online defense generation, and provides a new countermeasure against heap attacks. The evaluation shows that the system is effective and efficient.
This work provides the community with a timely comprehensive review of backdoor attacks and countermeasures on deep learning. According to the attackers capability and affected stage of the machine learning pipeline, the attack surfaces are recognize d to be wide and then formalized into six categorizations: code poisoning, outsourcing, pretrained, data collection, collaborative learning and post-deployment. Accordingly, attacks under each categorization are combed. The countermeasures are categorized into four general classes: blind backdoor removal, offline backdoor inspection, online backdoor inspection, and post backdoor removal. Accordingly, we review countermeasures, and compare and analyze their advantages and disadvantages. We have also reviewed the flip side of backdoor attacks, which are explored for i) protecting intellectual property of deep learning models, ii) acting as a honeypot to catch adversarial example attacks, and iii) verifying data deletion requested by the data contributor.Overall, the research on defense is far behind the attack, and there is no single defense that can prevent all types of backdoor attacks. In some cases, an attacker can intelligently bypass existing defenses with an adaptive attack. Drawing the insights from the systematic review, we also present key areas for future research on the backdoor, such as empirical security evaluations from physical trigger attacks, and in particular, more efficient and practical countermeasures are solicited.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا