ﻻ يوجد ملخص باللغة العربية
The Interface Region Imaging Spectrograph (IRIS) routinely observes the Si IV resonance lines. When analyzing observations of these lines it has typically been assumed they form under optically thin conditions. This is likely valid for the quiescent Sun, but this assumption has also been applied to the more extreme flaring scenario. We used 36 electron beam driven radiation hydrodynamic solar flare simulations, computed using the RADYN code, to probe the validity of this assumption. Using these simulated atmospheres we solved the radiation transfer equations to obtain the non-LTE, non-equilibrium populations, line profiles, and opacities for a model Silicon atom, including charge exchange processes. This was achieved using the `minority species version of RADYN. The inclusion of charge exchange resulted in a substantial fraction of Si IV at cooler temperatures than those predicted by ionisation equilibrium. All simulations with an injected energy flux $F>5times10^{10}$ erg cm$^{-2}$ s$^{-1}$ resulted in optical depth effects on the Si IV emission, with differences in both intensity and line shape compared to the optically thin calculation. Weaker flares (down to $Fapprox5times10^{9}$ erg cm$^{-2}$ s$^{-1}$) also resulted in Si IV emission forming under optically thick conditions, depending on the other beam parameters. When opacity was significant, the atmospheres generally had column masses in excess of $5times10^{-6}$ g cm$^{-2}$ over the temperature range $40$ to $100$ kK, and the Si IV formation temperatures were between $30$ and $60$ kK. We urge caution when analyzing Si IV flare observations, or when computing synthetic emission without performing a full radiation transfer calculation.
We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When c
Resonance spectral lines such as H I Ly {alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines includ
We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distribut
We present evidence that a magnetic flux rope was formed before a coronal mass ejection (CME) and its associated long-duration flare during a pair of preceding confined eruptions and associated impulsive flares in a compound event in NOAA Active Regi
There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-l