ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced control laws for the new generation of AO systems

86   0   0.0 ( 0 )
 نشر من قبل Carlos Correia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Carlos M. Correia




اسأل ChatGPT حول البحث

Geared by the increasing need for enhanced performance, both optical and computational, new dynamic control laws have been researched in recent years for next generation adaptive optics systems on current 10 m-class and extremely large telescopes up to 40 m. We provide an overview of these developments and point out prospects to making such controllers drive actual systems on-sky.

قيم البحث

اقرأ أيضاً

The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the ob servation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$sqrt{textrm{Hz}}$ with accuracy and precision of better than 1 %.
MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of legacy 6.5m MMT adaptive optics system. It is an NSF MSIP-funded project that includes (i) refurbishing of the MMT Adaptive Secondary Mirror (ASM), (ii) new high sensitive and high spatial order visible and near-infrared pyramid wavefront sensors, and (iii) the upgrade of Arizona Infrared Imager and Echelle Spectrograph (ARIES) and MMT high Precision Imaging Polarimeter (MMTPol) science cameras. This paper will present the design and development of the visible pyramid wavefront sensor. This system consists of an acquisition camera, a fast-steering tip-tilt modulation mirror, a double pyramid, a pupil imaging triplet lens, and a low noise and high-speed frame rate based CCID75 camera. We will report on hardware and software and present the laboratory characterization results of the individual subsystems, and outline the on-sky commissioning plan.
High-reflectivity fused silica mirrors are at the epicentre of current advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5 to 2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered on to the ring heater.
Knowledge of the intensity and phase profiles of spectral components in a coherent optical field is critical for a wide range of high-precision optical applications. One of these is interferometric gravitational wave detectors, which rely on such fie lds for precise control of the experiment. Here we demonstrate a new device, an textit{optical lock-in camera}, and highlight how they can be used within a gravitational wave interferometer to directly image fields at a higher spatial and temporal resolution than previously possible. This improvement is achieved using a Pockels cell as a fast optical switch which transforms each pixel on a sCMOS array into an optical lock-in amplifier. We demonstrate that the optical lock-in camera can image fields with 2~Mpx resolution at 10~Hz with a sensitivity of -62~dBc when averaged over 2s.
The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The firs t observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than $10^{-23}/sqrt{text{Hz}}$ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the observable volume in the universe. The average distance at which coalescing binary black hole systems with individual masses of 30 $M_odot$ could be detected was 1.3 Gpc. Similarly, the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of Universe increased respectively by a factor 69 and 43. These improvements allowed Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا