ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on coverings of virtual knots

128   0   0.0 ( 0 )
 نشر من قبل Shin Satoh
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a virtual knot $K$ and an integer $rgeq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,dots,J_m$, there is a virtual knot $K$ such that $K^{(r)}=J_r$ $(r=0mbox{ and }2leq rleq m)$, $K^{(1)}=K$, and otherwise $K^{(r)}=J_0$.

قيم البحث

اقرأ أيضاً

In this short note we show the existence of an epimorphism between groups of $2$-bridge knots by means of an elementary argument using the Riley polynomial. As a corollary, we give a classification of $2$-bridge knots by Riley polynomials.
70 - Sam Nelson , Yuqi Zhao 2017
We generalize unoriented handlebody-links to the twisted virtual case, obtaining Reidemeister moves for handlebody-links in ambient spaces of the form $Sigmatimes [0,1]$ for $Sigma$ a compact closed 2-manifold up to stable equivalence. We introduce a related algebraic structure known as twisted virtual bikeigebras whose axioms are motivated by the twisted virtual handlebody-link Reidemeister moves. We use twisted virtual bikeigebras to define $X$-colorability for twisted virtual handlebody-links and define an integer-valued invariant $Phi_{X}^{mathbb{Z}}$ of twisted virtual handlebody-links. We provide example computations of the new invariants and use them to distinguish some twisted virtual handlebody-links.
It is known that the number of biquandle colorings of a long virtual knot diagram, with a fixed color of the initial arc, is a knot invariant. In this paper we describe a more subtle invariant: a family of biquandle endomorphisms obtained from the set of colorings and longitudinal information.
By work of W. Thurston, knots and links in the 3-sphere are known to either be torus links, or to contain an essential torus in their complement, or to be hyperbolic, in which case a unique hyperbolic volume can be calculated for their complement. We employ a construction of Turaev to associate a family of hyperbolic 3-manifolds of finite volume to any classical or virtual link, even if non-hyperbolic. These are in turn used to define the Turaev volume of a link, which is the minimal volume among all the hyperbolic 3-manifolds associated via this Turaev construction. In the case of a classical link, we can also define the classical Turaev volume, which is the minimal volume among all the hyperbolic 3-manifolds associated via this Turaev construction for the classical projections only. We then investigate these new invariants.
Multicrossings, which have previously been defined for classical knots and links, are extended to virtual knots and links. In particular, petal diagrams are shown to exist for all virtual knots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا