ﻻ يوجد ملخص باللغة العربية
For a virtual knot $K$ and an integer $rgeq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,dots,J_m$, there is a virtual knot $K$ such that $K^{(r)}=J_r$ $(r=0mbox{ and }2leq rleq m)$, $K^{(1)}=K$, and otherwise $K^{(r)}=J_0$.
In this short note we show the existence of an epimorphism between groups of $2$-bridge knots by means of an elementary argument using the Riley polynomial. As a corollary, we give a classification of $2$-bridge knots by Riley polynomials.
We generalize unoriented handlebody-links to the twisted virtual case, obtaining Reidemeister moves for handlebody-links in ambient spaces of the form $Sigmatimes [0,1]$ for $Sigma$ a compact closed 2-manifold up to stable equivalence. We introduce a
It is known that the number of biquandle colorings of a long virtual knot diagram, with a fixed color of the initial arc, is a knot invariant. In this paper we describe a more subtle invariant: a family of biquandle endomorphisms obtained from the set of colorings and longitudinal information.
By work of W. Thurston, knots and links in the 3-sphere are known to either be torus links, or to contain an essential torus in their complement, or to be hyperbolic, in which case a unique hyperbolic volume can be calculated for their complement. We
Multicrossings, which have previously been defined for classical knots and links, are extended to virtual knots and links. In particular, petal diagrams are shown to exist for all virtual knots.