ﻻ يوجد ملخص باللغة العربية
The maintenance of the proliferative cell niche is critical to epithelial tissue morphology and function. In this paper we investigate how current modelling methods can result in the erroneous loss of proliferative cells from the proliferative cell niche. Using an established model of the inter-follicular epidermis we find there is a limit to the proliferative cell densities that can be maintained in the basal layer (the niche) if we do not include additional mechanisms to stop the loss of proliferative cells from the niche. We suggest a new methodology that enables maintenance of a desired homeostatic population of proliferative cells in the niche: a rotational force is applied to the two daughter cells during the mitotic phase of division to enforce a particular division direction. We demonstrate that this new methodology achieves this goal. This methodology reflects the regulation of the orientation of cell division.
Since the discovery of a cancer initiating side population in solid tumours, studies focussing on the role of so-called cancer stem cells in cancer initiation and progression have abounded. The biological interrogation of these cells has yielded volu
Bone remodelling maintains the functionality of skeletal tissue by locally coordinating bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts) in the form of Bone Multicellular Units (BMUs). Understanding the emergence of such struct
Compiled data for the stem cell numbers, Ns, and division rates, ms, is reanalized in order to show that we can distinguish two groups of human tissues. In the first one, there is a relatively high fraction of maintenance (stem and transit) cells in
Understanding to what extent stem cell potential is a cell-intrinsic property, or an emergent behavior coming from global tissue dynamics and geometry, is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem
Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models