ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiply-imaged time-varying sources behind galaxy clusters - Comparing FRBs to QSOs, SNe, and GRBs

87   0   0.0 ( 0 )
 نشر من قبل Jenny Wagner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With upcoming (continuum) surveys of high-resolution radio telescopes, detection rates of fast radio bursts (FRBs) might approach $10^5$ per sky per day by future extremely large observatories, such as the possible extension of the Square Kilometer Array (SKA) to a phase 2 array. Depending on the redshift distribution of FRBs and using the repeating FRB121102 as a model, we calculate a detection rate of multiply-imaged FRBs with their multiply-imaged hosts caused by the distribution of galaxy-cluster scale gravitational lenses of the order of $10^{-4}$ per square degree per year for a minimum total flux of the host of 10 $mu$Jy at 1.4 GHz for SKA phase 2. Our comparison of estimated detection rates for quasars, supernovae, gamma ray bursts, and FRBs shows that multiple images of FRBs could be more numerous than those of gamma ray bursts and supernovae and as numerous as multiple images of quasars. Time delays between the multiple images of an FRB break degeneracies in model-based and model-independent lens reconstructions as other time-varying sources do, yet without a microlensing bias as FRBs are more point-like and have shorter duration times. We estimate the relative imprecision of FRB time-delay measurements to be $10^{-10}$ for time delays on the order of 100 days for galaxy-cluster scale lenses, yielding more precise (local) lens properties than time delays from the other time-varying sources. Using the lens modelling software Grale, we show the increase in accuracy and precision of the reconstructed scaled surface mass density map of a simulated cluster-scale lens when adding time delays for one set of multiple images to the set of observational constraints.


قيم البحث

اقرأ أيضاً

Supernova Refsdal, multiply imaged by cluster MACSJ1149.5+2223, represents a rare opportunity to make a true blind test of model predictions in extragalactic astronomy, on a time scale that is short compared to a human lifetime. In order to take adva ntage of this event, we produced seven gravitational lens models with five independent methods, based on Hubble Space Telescope (HST) Hubble Frontier Field images, along with extensive spectroscopic follow-up observations by HST, the Very Large and the Keck Telescopes. We compare the model predictions and show that they agree reasonably well with the measured time delays and magnification ratios between the known images, even though these quantities were not used as input. This agreement is encouraging, considering that the models only provide statistical uncertainties, and do not include additional sources of uncertainties such as structure along the line of sight, cosmology, and the mass sheet degeneracy. We then present the model predictions for the other appearances of SN Refsdal. A future image will reach its peak in the first half of 2016, while another image appeared between 1994 and 2004. The past image would have been too faint to be detected in existing archival images. The future image should be approximately one third as bright as the brightest known image (i.e., H_AB~25.7 mag at peak and H_AB~26.7 mag six months before peak), and thus detectable in single-orbit HST images. We will find out soon whether our predictions are correct.
We report spectroscopic confirmation and high-resolution infrared imaging of a z=2.79 triply-imaged galaxy behind the Bullet Cluster. This source, a Spitzer-selected luminous infrared galaxy (LIRG), is confirmed via polycyclic aromatic hydrocarbon (P AH) features using the Spitzer Infrared Spectrograph (IRS) and resolved with HST WFC3 imaging. In this galaxy, which with a stellar mass of M*=4e9 Msun is one of the two least massive ones studied with IRS at z>2, we also detect H_2 S(4) and H_2 S(5) pure rotational lines (at 3.1 sigma and 2.1 sigma) - the first detection of these molecular hydrogen lines in a high-redshift galaxy. From the molecular hydrogen lines we infer an excitation temperature T=377+68-84 K. The detection of these lines indicates that the warm molecular gas mass is 6(+36-4)% of the stellar mass and implies the likely existence of a substantial reservoir of cold molecular gas in the galaxy. Future spectral observations at longer wavelengths with facilities like the Herschel Space Observatory, the Large Millimeter Telescope, and the Atacama Pathfinder EXperiment (APEX) thus hold the promise of precisely determining the total molecular gas mass. Given the redshift, and using refined astrometric positions from the high resolution imaging, we also update the magnification estimate and derived fundamental physical properties of this system. The previously published values for total infrared luminosity, star formation rate, and dust temperature are confirmed modulo the revised magnification; however we find that PAH emission is roughly a factor of five stronger than would be predicted by the relations between the total infrared and PAH luminosity reported for SMGs and starbursts in Pope et al. (2008).
We present evidence for a Spitzer-selected luminous infrared galaxy (LIRG) behind the Bullet Cluster. The galaxy, originally identified in IRAC photometry as a multiply imaged source, has a spectral energy distribution consistent with a highly extinc ted (A_V~3.3), strongly star-forming galaxy at z=2.7. Using our strong gravitational lensing model presented in Bradac et al. (2006), we find that the magnifications are 10 to 50 for the three images of the galaxy. The implied infrared luminosity is consistent with the galaxy being a LIRG, with a stellar mass of M_*~2e11 M_Sun and a star formation rate of ~90 M_Sun/yr. With lensed fluxes at 24 microns of 0.58 mJy and 0.39 mJy in the two brightest images, this galaxy presents a unique opportunity for detailed study of an obscured starburst with star fomation rate comparable to that of L* galaxies at z>2.
We compute the expected number of quasars multiply imaged by cluster size dark halos for current wide field quasar surveys by carrying out a large ensemble of ray tracing simulations through clusters from a cosmological N-body simulation of the LCDM cosmology. Our calculation predicts ~ 4 quasar lenses with splittings theta > 10 in the SDSS spectroscopic quasar sample, consistent with the recent discovery of the wide separation lens SDSSJ1004+4112 which has theta=14.6. The SDSS faint photometric quasar survey will contain ~12 multiply imaged quasars with splittings theta > 10. Of these, ~ 2 will be lenses with separations theta > 30, and ~ 2 will be at high redshift (z ~ 4).
We report the discovery of a multiply lensed Ly Alpha (Lya) emitter at z = 3.90 behind the massive galaxy cluster WARPS J1415.1+3612 at z = 1.026. Images taken by the Hubble Space Telescope(HST) using ACS reveal a complex lensing system that produces a prominent, highly magnified arc and a triplet of smaller arcs grouped tightly around a spectroscopically confirmed cluster member. Spectroscopic observations using FOCAS on Subaru confirm strong Lya emission in the source galaxy and provide redshifts for more than 21 cluster members, from which we obtain a velocity dispersion of 807+/-185 km/s. Assuming a singular isothermal sphere profile, the mass within the Einstein ring (7.13+/-0.38) corresponds to a central velocity dispersion of 686+15-19 km/s for the cluster, consistent with the value estimated from cluster member redshifts. Our mass profile estimate from combining strong lensing and dynamical analyses is in good agreement with both X-ray and weak lensing results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا