ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic ray ensembles as signatures of ultra-high energy photons interacting with the solar magnetic field

81   0   0.0 ( 0 )
 نشر من قبل Niraj Dhital
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Propagation of ultra-high energy photons in the solar magnetosphere gives rise to cascades comprising thousands of photons. We study the cascade development using Monte Carlo simulations and find that the photons in the cascades are spatially extended over hundreds of kilometers as they arrive at the top of the Earths atmosphere. We compare results from simulations which use two models of the solar magnetic field, and show that although signatures of such cascades are different for the models used, for practical detection purpose in the ground-based detectors, they are similar.



قيم البحث

اقرأ أيضاً

Propagation of ultra-high energy photons in the galactic and intergalactic space gives rise to cascades comprising thousands of photons. Using Monte Carlo simulations, we investigate the development of such cascades in the solar magnetosphere, and fi nd that the photons in the cascades are distributed over hundreds of kilometers as they arrive at the top of the Earths atmosphere. We also perform similar study for cascades starting as far as 10 Mpc away from us using relevant magnetic field models. A few photons correlated in time are expected to arrive at the Earth from the latter type of cascade. We present our simulation results and discuss the prospects for detection of these cascades with the Cosmic-Ray Extremely Distributed Observatory.
144 - V. Berezinsky 2009
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discov ery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
We present a method to correct for deflections of ultra-high energy cosmic rays in the galactic magnetic field. We perform these corrections by simulating the expected arrival directions of protons using a parameterization of the field derived from F araday rotation and synchrotron emission measurements. To evaluate the method we introduce a simulated astrophysical scenario and two observables designed for testing cosmic ray deflections. We show that protons can be identified by taking advantage of the galactic magnetic field pattern. Consequently, cosmic ray deflection in the galactic field can be verified experimentally. The method also enables searches for directional correlations of cosmic rays with source candidates.
We present a search for high-energy $gamma$-ray emission from 566 Active Galactic Nuclei at redshift $z > 0.2$, from the 2WHSP catalog of high-synchrotron peaked BL Lac objects with eight years of Fermi-LAT data. We focus on a redshift range where el ectromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above $approx$ $5sigma$ (TS $geq 25$) in the 1 - 300 GeV energy range. By discriminating significant sources based on their $gamma$-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modeling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic-ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.
126 - Hajime Takami 2011
The propagation trajectories of ultra-high-energy cosmic rays (UHECRs) are inevitably affected by Galactic magnetic field (GMF). Because of the inevitability, the importance of the studies of the propagation in GMF have increased to interpret the res ults of recent UHECR experiments. This article reviews the effects of GMF to the propagation and arrival directions of UHECRs and introduces recent studies to constrain UHECR sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا