ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of first order sesquilinear forms

57   0   0.0 ( 0 )
 نشر من قبل Dmitri Vassiliev
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A natural way to obtain a system of partial differential equations on a manifold is to vary a suitably defined sesquilinear form. The sesquilinear forms we study are Hermitian forms acting on sections of the trivial $mathbb{C}^n$-bundle over a smooth $m$-dimensional manifold without boundary. More specifically, we are concerned with first order sesquilinear forms, namely, those generating first order systems. Our goal is to classify such forms up to $GL(n,mathbb{C})$ gauge equivalence. We achieve this classification in the special case of $m=4$ and $n=2$ by means of geometric and topological invariants (e.g. Lorentzian metric, spin/spin$^c$ structure, electromagnetic covector potential) naturally contained within the sesquilinear form - a purely analytic object. Essential to our approach is the interplay of techniques from analysis, geometry, and topology.

قيم البحث

اقرأ أيضاً

Two sesquilinear forms $Phi:mathbb C^mtimesmathbb C^mto mathbb C$ and $Psi:mathbb C^ntimesmathbb C^nto mathbb C$ are called topologically equivalent if there exists a homeomorphism $varphi :mathbb C^mto mathbb C^n$ (i.e., a continuous bijection whose inverse is also a continuous bijection) such that $Phi(x,y)=Psi(varphi (x),varphi (y))$ for all $x,yin mathbb C^m$. R.A.Horn and V.V.Sergeichuk in 2006 constructed a regularizing decomposition of a square complex matrix $A$; that is, a direct sum $SAS^*=Roplus J_{n_1}oplusdotsoplus J_{n_p}$, in which $S$ and $R$ are nonsingular and each $J_{n_i}$ is the $n_i$-by-$n_i$ singular Jordan block. In this paper, we prove that $Phi$ and $Psi$ are topologically equivalent if and only if the regularizing decompositions of their matrices coincide up to permutation of the singular summands $J_{n_i}$ and replacement of $Rinmathbb C^{rtimes r}$ by a nonsingular matrix $Rinmathbb C^{rtimes r}$ such that $R$ and $R$ are the matrices of topologically equivalent forms. Analogous results for real and complex bilinear forms are also obtained.
The paper deals with a formally self-adjoint first order linear differential operator acting on m-columns of complex-valued half-densities over an n-manifold without boundary. We study the distribution of eigenvalues in the elliptic setting and the p ropagator in the hyperbolic setting, deriving two-term asymptotic formulae for both. We then turn our attention to the special case of a two by two operator in dimension four. We show that the geometric concepts of Lorentzian metric, Pauli matrices, spinor field, connection coefficients for spinor fields, electromagnetic covector potential, Dirac equation and Dirac action arise naturally in the process of our analysis.
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measur ements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
171 - Rosario Corso 2018
The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of ses quilinear forms, such as Katos theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.
73 - Guido Franchetti 2018
This paper studies the space of $L ^2 $ harmonic forms and $L ^2 $ harmonic spinors on Taub-bolt, a Ricci-flat Riemannian 4-manifold of ALF type. We prove that the space of harmonic square-integrable 2-forms on Taub-bolt is 2-dimensional and construc t a basis. We explicitly find a 2-parameter family of $L ^2 $ zero modes of the Dirac operator twisted by an arbitrary $L ^2 $ harmonic connection. We also show that the number of zero modes found is equal to the index of the Dirac operator. We compare our results with those known in the case of Taub-NUT and Euclidean Schwarzschild as these manifolds present interesting similarities with Taub-bolt. In doing so, we slightly generalise known results on harmonic spinors on Euclidean Schwarzschild.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا