ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclusive dijet photoproduction in ultraperipheral heavy-ion collisions at the CERN LHC in next-to-leading order QCD

93   0   0.0 ( 0 )
 نشر من قبل Vadim Guzey
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the cross section of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC using next-to-leading order perturbative QCD. We demonstrate that our theoretical calculations provide a good description of various kinematic distributions measured by the ATLAS collaboration. We find that the calculated dijet photoproduction cross section is sensitive to nuclear modifications of parton distribution functions (PDFs) at the level of 10 to 20%. Hence, this process can be used to reduce uncertainties in the determination of these nuclear PDFs, whose current magnitude is comparable to the size of the calculated nuclear modifications of the dijet photoproduction cross section.

قيم البحث

اقرأ أيضاً

99 - V. Guzey 2016
We make predictions for the cross sections of diffractive dijet photoproduction in $pp$, $pA$ and $AA$ ultraperipheral collisions (UPCs) at the LHC during Runs 1 and 2 using next-to-leading perturbative QCD. We find that the resulting cross sections are sufficiently large and, compared to lepton-proton scattering at HERA, have an enhanced sensitivity to small observed momentum fractions in the diffractive exchange, commonly denoted $z_{P}^{rm jets}$, and an unprecedented reach in the invariant mass of the photon-nucleon system $W$. We examine two competing schemes of diffractive QCD factorization breaking, which assume either a global suppression factor or a suppression for resolved photons only and demonstrate that the two scenarios can be distinguished by the nuclear dependence of the distributions in the observed parton momentum fraction in the photon $x_{gamma}^{rm jets}$.
We calculate the cross section of inclusive dijet photoproduction in ultraperipheral collisions (UPCs) of heavy ions at the CERN Large Hadron Collider using next-to-leading order perturbative QCD and demonstrate that it provides a good description of the ATLAS data. We study the role of this data in constraining nuclear parton distribution functions (nPDFs) using the Bayesian reweighting technique and find that it can reduce current uncertainties of nPDFs at small $x$ by a factor of 2. We also make predictions for diffractive dijet photoproduction in UPCs and examine its potential to shed light on the disputed mechanism of QCD factorization breaking in diffraction.
125 - V. Guzey , M. Klasen 2019
We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. T he effect of including these data in nCTEQ or EPPS16 nuclear parton density functions (nPDFs) is then studied using the Bayesian reweighting technique. For an assumed total error of 5% on the final data, its inclusion would lead to a significant reduction of the nPDF uncertainties of up to a factor of two at small values of the parton momentum fraction. As an outlook, we discuss future analyes of diffractive nPDFs, which are so far completely unknown.
Using the general notion of cross section fluctuations in hadron--nucleus scattering at high energies, we derive an expression for the cross section of incoherent $J/psi$ photoproduction on heavy nuclei $dsigma_{gamma A to J/psi Y}/dt$, which include s both elastic $dsigma_{gamma p to J/psi p}/dt$ and proton-dissociation $dsigma_{gamma p to J/psi Y}/dt$ photoproduction on target nucleons. We find that with good accuracy, $dsigma_{gamma A to J/psi Y}/dt$ can be expressed as a product of the sum of the $dsigma_{gamma p to J/psi p}/dt$ and $dsigma_{gamma p to J/psi Y}/dt$ cross sections, which have been measured at HERA, and the common nuclear shadowing factor, which is calculated using the leading twist nuclear shadowing model. Our prediction for the cross section of incoherent $J/psi$ photoproduction in Pb-Pb UPCs at $sqrt{s_{NN}}=2.76$ TeV and $y=0$, $dsigma_{AA to J/psi AY}(y=0)/dy=0.59-1.24$ mb, agrees within significant theoretical uncertainties with the data of the ALICE collaboration.
133 - J. Binnewies , 1996
We study inclusive charged-hadron production in collisions of quasireal photons at NLO in perturbative QCD, using fragmentation functions recently extracted from PEP and LEP1 data. We superimpose the direct (DD), single-resolved (DR), and double-reso lved (RR) gamma-gamma channels. First, we confront existing data taken by TASSO at PETRA and by MARK II at PEP with our NLO calculations. We also make comparisons with the neutral-kaon to charged-hadron ratio measured by MARK II. Then, we present NLO predictions for LEP2, a next-generation e+e- linear collider (NLC) in the TESLA design, and a Compton collider obtained by converting a NLC. We analyze transverse-momentum and rapidity spectra with regard to the scale dependence, the interplay of the DD, DR, and RR components, the sensitivity to the gluon density in the resolved photon, and the influence of gluon fragmentation. It turns out that the inclusive measurement of small-p_T hadrons at a Compton collider would greatly constrain the gluon density of the photon and the gluon fragmentation function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا