ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel particle swarm optimizer with multi-stage transformation and genetic operation for VLSI routing

313   0   0.0 ( 0 )
 نشر من قبل Genggeng Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the basic model for very large scale integration (VLSI) routing, the Steiner minimal tree (SMT) can be used in various practical problems, such as wire length optimization, congestion, and time delay estimation. In this paper, a novel particle swarm optimization (PSO) algorithm based on multi-stage transformation and genetic operation is presented to construct two types of SMT, including non-Manhattan SMT and Manhattan SMT. Firstly, in order to be able to handle two types of SMT problems at the same time, an effective edge-vertex encoding strategy is proposed. Secondly, a multi-stage transformation strategy is proposed to both expand the algorithm search space and ensure the effective convergence. We have tested three types from two to four stages and various combinations under each type to highlight the best combination. Thirdly, the genetic operators combined with union-find partition are designed to construct the discrete particle update formula for discrete VLSI routing. Moreover, in order to introduce uncertainty and diversity into the search of PSO algorithm, we propose an improved mutation operation with edge transformation. Experimental results show that our algorithm from a global perspective of multilayer structure can achieve the best solution quality among the existing algorithms. Finally, to our best knowledge, it is the first work to address both manhattan and non-manhattan routing at the same time.



قيم البحث

اقرأ أيضاً

Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design of water distribution systems is described. An earlier MOPSO algorithm is augmented with (a) local search, (b) a modified strategy for assigning the leader, an d (c) a modified mutation scheme. For one of the benchmark problems described in the literature, the effect of each of the above features on the algorithm performance is demonstrated. The augmented MOPSO algorithm (called MOPSO+) is applied to five benchmark problems, and in each case, it finds non-dominated solutions not reported earlier. In addition, for the purpose of comparing Pareto fronts (sets of non-dominated solutions) obtained by different algorithms, a new criterion is suggested, and its usefulness is pointed out with an example. Finally, some suggestions regarding future research directions are made.
Most existing swarm pattern formation methods depend on a predefined gene regulatory network (GRN) structure that requires designers priori knowledge, which is difficult to adapt to complex and changeable environments. To dynamically adapt to the com plex and changeable environments, we propose an automatic design framework of swarm pattern formation based on multi-objective genetic programming. The proposed framework does not need to define the structure of the GRN-based model in advance, and it applies some basic network motifs to automatically structure the GRN-based model. In addition, a multi-objective genetic programming (MOGP) combines with NSGA-II, namely MOGP-NSGA-II, to balance the complexity and accuracy of the GRN-based model. In evolutionary process, an MOGP-NSGA-II and differential evolution (DE) are applied to optimize the structures and parameters of the GRN-based model in parallel. Simulation results demonstrate that the proposed framework can effectively evolve some novel GRN-based models, and these GRN-based models not only have a simpler structure and a better performance, but also are robust to the complex and changeable environments.
127 - Tarik A. Rashid 2019
Identifying university students weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students outcomes. This proposed system would improve instruction by the faculty and enhance the students learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.
The capacitated arc routing problem (CARP) is a challenging combinatorial optimisation problem abstracted from typical real-world applications, like waste collection and mail delivery. However, few studies considered dynamic changes during the vehicl es service, which can make the original schedule infeasible or obsolete. The few existing studies are limited by dynamic scenarios that can suffer single types of dynamic events, and by algorithms that rely on special operators or representations, being unable to benefit from the wealth of contributions provided by the static CARP literature. Here, we provide the first mathematical formulation for dynamic CARP (DCARP) and design a simulation system to execute the CARP solutions and generate DCARP instances with several common dynamic events. We then propose a novel framework able to generalise all existing static CARP optimisation algorithms so that they can cope with DCARP instances. The framework has the option to enhance optimisation performance for DCARP instances based on a restart strategy that makes no use of past history, and a sequence transfer strategy that benefits from past optimisation experience. Empirical studies are conducted on a wide range of DCARP instances. The results highlight the need for tackling dynamic changes and show that the proposed framework significantly improves over existing algorithms.
122 - Ho-Kin Tang , Sim Kuan Goh 2021
Drawing inspiration from the philosophy of Yi Jing, Yin-Yang pair optimization (YYPO) has been shown to achieve competitive performance in single objective optimizations. Besides, it has the advantage of low time complexity when comparing to other po pulation-based optimization. As a conceptual extension of YYPO, we proposed the novel Yi optimization (YI) algorithm as one of the best non-population-based optimizer. Incorporating both the harmony and reversal concept of Yi Jing, we replace the Yin-Yang pair with a Yi-point, in which we utilize the Levy flight to update the solution and balance both the effort of the exploration and the exploitation in the optimization process. As a conceptual prototype, we examine YI with IEEE CEC 2017 benchmark and compare its performance with a Levy flight-based optimizer CV1.0, the state-of-the-art dynamical Yin-Yang pair optimization in YYPO family and a few classical optimizers. According to the experimental results, YI shows highly competitive performance while keeping the low time complexity. Hence, the results of this work have implications for enhancing meta-heuristic optimizer using the philosophy of Yi Jing, which deserves research attention.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا