ﻻ يوجد ملخص باللغة العربية
As the basic model for very large scale integration (VLSI) routing, the Steiner minimal tree (SMT) can be used in various practical problems, such as wire length optimization, congestion, and time delay estimation. In this paper, a novel particle swarm optimization (PSO) algorithm based on multi-stage transformation and genetic operation is presented to construct two types of SMT, including non-Manhattan SMT and Manhattan SMT. Firstly, in order to be able to handle two types of SMT problems at the same time, an effective edge-vertex encoding strategy is proposed. Secondly, a multi-stage transformation strategy is proposed to both expand the algorithm search space and ensure the effective convergence. We have tested three types from two to four stages and various combinations under each type to highlight the best combination. Thirdly, the genetic operators combined with union-find partition are designed to construct the discrete particle update formula for discrete VLSI routing. Moreover, in order to introduce uncertainty and diversity into the search of PSO algorithm, we propose an improved mutation operation with edge transformation. Experimental results show that our algorithm from a global perspective of multilayer structure can achieve the best solution quality among the existing algorithms. Finally, to our best knowledge, it is the first work to address both manhattan and non-manhattan routing at the same time.
Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design of water distribution systems is described. An earlier MOPSO algorithm is augmented with (a) local search, (b) a modified strategy for assigning the leader, an
Most existing swarm pattern formation methods depend on a predefined gene regulatory network (GRN) structure that requires designers priori knowledge, which is difficult to adapt to complex and changeable environments. To dynamically adapt to the com
Identifying university students weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are
The capacitated arc routing problem (CARP) is a challenging combinatorial optimisation problem abstracted from typical real-world applications, like waste collection and mail delivery. However, few studies considered dynamic changes during the vehicl
Drawing inspiration from the philosophy of Yi Jing, Yin-Yang pair optimization (YYPO) has been shown to achieve competitive performance in single objective optimizations. Besides, it has the advantage of low time complexity when comparing to other po