ﻻ يوجد ملخص باللغة العربية
The influence of oscillating quadrupole fields on atomic energy levels is examined theoretically and general expressions for the quadrupole matrix elements are given. The results are relevant to any ion-based clock in which one of the clock states supports a quadrupole moment. Clock shifts are estimated for $^{176}$Lu$^+$ and indicate that coupling to the quadrupole field would not be a limitation to clock accuracy at the $lesssim10^{-19}$ level. Nevertheless, a method is suggested that would allow this shift to be calibrated. This method utilises a resonant quadrupole coupling that enables the quadrupole moment of the atom to be measured. A proof-of-principle demonstration is given using $^{138}$Ba$^+$, in which the quadrupole moment of the $D_{5/2}$ state is estimated to be $Theta=3.229(89) e a_0^2$.
We examine a range of effects arising from ac magnetic fields in high precision metrology. These results are directly relevant to high precision measurements, and accuracy assessments for state-of-the-art optical clocks. Strategies to characterize th
We show that quantification of the performance of quantum-enhanced measurement schemes based on the concept of quantum Fisher information yields asymptotically equivalent results as the rigorous Bayesian approach, provided generic uncorrelated noise
In an idealistic setting, quantum metrology protocols allow to sense physical parameters with mean squared error that scales as $1/N^2$ with the number of particles involved---substantially surpassing the $1/N$-scaling characteristic to classical sta
Quantum metrology employs quantum effects to attain a measurement precision surpassing the limit achievable in classical physics. However, it was previously found that the precision returns the shot-noise limit (SNL) from the ideal Zeno limit (ZL) du
We present a method that uses radio-frequency pulses to cancel the quadrupole shift in optical clock transitions. Quadrupole shifts are an inherent inhomogeneous broadening mechanism in trapped ion crystals, limiting current optical ion clocks to wor