ترغب بنشر مسار تعليمي؟ اضغط هنا

Status and Prospects of Discrete Symmetries Tests in Positronium Decays with the J-PET Detector

130   0   0.0 ( 0 )
 نشر من قبل Michal Silarski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Silarski




اسأل ChatGPT حول البحث

Positronium is a unique laboratory to study fundamental symmetries in the Standard Model, reflection in space ($mathcal{P}$), reversal in time ($mathcal{T}$), charge conjugation ($mathcal{C}$) and their combinations. The experimental limits on the $mathcal{C}$, $mathcal{CP}$ and $mathcal{CPT}$ symmetries violation in the decays of positronium are still several orders of magnitude higher than the expectations. The newly constructed Jagiellonian Positron Emission Tomograph (J-PET) was optimized for the registration of photons from the electron-positron annihilations. It enables tests of discrete symmetries in decays of positronium atoms via the determination of the expectation values of the discrete-symmetries-odd operators. In this article we present the capabilities of the J-PET detector in improving the current precision of discrete symmetries tests and report on the progress of analysis data from the first data-taking runs.



قيم البحث

اقرأ أيضاً

100 - P. Moskal , D. Alfs , T. Bednarski 2016
The Jagiellonian Positron Emission Tomograph (J-PET) was constructed as a prototype of the cost-effective scanner for the simultaneous metabolic imaging of the whole human body. Being optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolution, it constitutes a multi-purpose detector providing new opportunities for studying the decays of positronium atoms. Positronium is the lightest purely leptonic object decaying into photons. As an atom bound by a central potential it is a parity eigenstate, and as an atom built out of an electron and an anti-electron it is an eigenstate of the charge conjugation operator. Therefore, the positronium is a unique laboratory to study discrete symmetries whose precision is limited in principle by the effects due to the weak interactions expected at the level of (~10$^{-14}$) and photon-photon interactions expected at the level of (~10$^{-9}$). The J-PET detector enables to perform tests of discrete symmetries in the leptonic sector via the determination of the expectation values of the discrete-symmetries-odd operators, which may be constructed from the spin of ortho-positronium atom and the momenta and polarization vectors of photons originating from its annihilation. In this article we present the potential of the J-PET detector to test the C, CP, T and CPT symmetries in the decays of positronium atoms.
In this paper we present prospects for using the J-PET detector to search for discrete symmetries violations in a purely leptonic system of the positronium atom. We discuss tests of CP and CPT symmetries by means of ortho-positronium decays into thre e photons. No zero expectation values for chosen correlations between ortho-positronium spin and momentum vectors of photons would imply the existence of physics phenomena beyond the Standard Model. Previous measurements resulted in violation amplitude parameters for CP and CPT symmetries consistent with zero, with an uncertainty of about 10-3. The J-PET detector allows to determine those values with better precision thanks to a unique time and angular esolution combined with a high geometrical acceptance. Achieving the aforementioned is possible due to application of polymer scintillators instead of crystals as detectors of annihilation quanta.
This article reports on the feasibility of testing of the symmetry under reversal in time in a purely leptonic system constituted by positronium atoms using the J-PET detector. The present state of T symmetry tests is discussed with an emphasis on th e scarcely explored sector of leptonic systems. Two possible strategies of searching for manifestations of T violation in non-vanishing angular correlations of final state observables in the decays of metastable triplet states of positronium available with J-PET are proposed and discussed. Results of a pilot measurement with J-PET and assessment of its performance in reconstruction of three-photon decays are shown along with an analysis of its impact on the sensitivity of the detector for the determination of T -violation sensitive observables.
The J-PET tomograph is constructed from plastic scintillator strips arranged axially in concentric cylindrical layers. It enables investigations of positronium decays by measurement of the time, position, polarization and energy deposited by photons in the scintillators, in contrast to studies conducted so far with crystal and semiconductor based detection systems where the key selection of events is based on the measurement of the photons energies. In this article we show that the J-PET tomograph system is capable of exclusive measurements of the decays of ortho-positronium atoms. We present the first positronium production results, its lifetime distribution measurements and discuss estimation of the influence of various background sources. The tomograph s performance demonstrated here makes it suitable for precision studies of positronium decays including entanglement of the final state photons, positron annihilation lifetime spectroscopy plus molecular imaging diagnostics.
139 - B. Majorovits 2015
The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T_1/2 > 2.1*10^25 y r. A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا