ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay

222   0   0.0 ( 0 )
 نشر من قبل Jason Fry
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the standard model, $lambda = g_A / g_V$, through multiple decay correlations. The Nab experiment will carry out measurements of the electron-neutrino correlation parameter $a$ with a precision of $delta a / a = 10^{-3}$ and the Fierz interference term $b$ to $delta b = 3times10^{-3}$ in unpolarized free neutron beta decay. These results, along with a more precise measurement of the neutron lifetime, aim to deliver an independent determination of the ratio $lambda$ with a precision of $delta lambda / lambda = 0.03%$ that will allow an evaluation of $V_{ud}$ and sensitively test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long asymmetric spectrometer that guides the decay electron and proton to two large area silicon detectors in order to precisely determine the electron energy and an estimation of the proton momentum from the proton time of flight. The Nab spectrometer is being commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source at Oak Ridge National Lab. We present an overview of the Nab experiment and recent updates on the spectrometer, analysis, and systematic effects.

قيم البحث

اقرأ أيضاً

Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.
The Nab experiment will measure the ratio of the weak axial-vector and vector coupling constants $lambda=g_A/g_V$ with precision $deltalambda/lambdasim3times10^{-4}$ and search for a Fierz term $b_F$ at a level $Delta b_F<10^{-3}$. The Nab detection system uses thick, large area, segmented silicon detectors to very precisely determine the decay protons time of flight and the decay electrons energy in coincidence and reconstruct the correlation between the antineutrino and electron momenta. Excellent understanding of systematic effects affecting timing and energy reconstruction using this detection system are required. To explore these effects, a series of ex situ studies have been undertaken, including a search for a Fierz term at a less sensitive level of $Delta b_F<10^{-2}$ in the beta decay of $^{45}$Ca using the UCNA spectrometer.
The standard model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the $beta$ decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum us ing two different detector arrays. An annular array of bismuth germanium oxide scintillators detected photons from 14 to 782~keV. The spectral shape was consistent with theory, and we determined a branching ratio of 0.00335 $pm$ 0.00005 [stat] $pm$ 0.00015 [syst]. A second detector array of large area avalanche photodiodes directly detected photons from 0.4 to 14~keV. For this array, the spectral shape was consistent with theory, and the branching ratio was determined to be 0.00582 $pm$ 0.00023 [stat] $pm$ 0.00062 [syst]. We report the first precision test of the shape of the photon energy spectrum from neutron radiative decay and a substantially improved determination of the branching ratio over a broad range of photon energies.
The aCORN experiment uses a novel asymmetry method to measure the electron-antineutrino correlation (a-coefficient) in free neutron decay that does not require precision proton spectroscopy. aCORN completed two physics runs at the NIST Center for Neu tron Research. The first run on the NG-6 beam line in 2013--2014 obtained the result a = 0.1090 +/- 0.0030 (stat) +/- 0.0028 (sys), a total uncertainty of 3.8%. The second run on the new NG-C high flux beam line promises an improvement in precision to <2%.
In the double beta decay experiment NEMO~3 a precise knowledge of the background in the signal region is of outstanding importance. This article presents the methods used in NEMO~3 to evaluate the backgrounds resulting from most if not all possible o rigins. It also illustrates the power of the combined tracking-calorimetry technique used in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا