ترغب بنشر مسار تعليمي؟ اضغط هنا

Goos-Hanchen effect in light transmission through biperiodic photonic-magnonic crystals

99   0   0.0 ( 0 )
 نشر من قبل Maciej Krawczyk
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical investigation of the Goos-Hanchen effect, i.e., the lateral shift of the light beam transmitted through one-dimensional biperiodic multilayered photonic systems consisting of equidistantmagnetic layers separated by finite size dielectric photonic crystals. We show that the increase of the number of periods in the photonic-magnonic structure leads to increase of the Goos-Hanchen shift in the vicinity of the frequencies of defect modes located inside the photonic band gaps. Presence of the linear magnetoelectric coupling in the magnetic layers can result in a vanishing of the positive maxima of the cross-polarized contribution to the Goos-Hanchen shift.

قيم البحث

اقرأ أيضاً

We describe the features of magnonic crystals based upon antiferromagnetic elements. Our main results are that with a periodic modulation of either magnetic fields or system characteristics, such as the anisotropy, it is possible to tailor the spin w ave spectra of antiferromagnetic systems into a band-like organization that displays a segregation of allowed and forbidden bands. The main features of the band structure, such as bandwidths and bandgaps, can be readily manipulated. Our results provide a natural link between two steadily growing fields of spintronics: antiferromagnetic spintronics and magnonics.
59 - A.J. Henning , T.M. Fromhold , 2010
We use semiclassical Hamiltonian optics to investigate the propagation of light rays through two-dimensional photonic crystals when slow spatial modulation of the lattice parameters induces mixed stable-chaotic ray dynamics. This modulation changes b oth the shape and frequency range of the allowed frequency bands, thereby bending the resulting semiclassical ray trajectories and confining them within particular regions of the crystal. The curved boundaries of these regions, combined with the bending of the orbits themselves, creates a hierarchy of stable and unstable chaotic trajectories in phase space. For certain lattice parameters and electromagnetic wave frequencies, islands of stable orbits act as a dynamical barrier, which separates the chaotic trajectories into two distinct regions of the crystal, thereby preventing the rays propagating through the structure. We show that changing the frequency of the light strongly affects the distribution of stable and unstable orbits in both real and phase space. This switches the dynamical barriers on and off and thus modulates the transmission of rays through the crystal. We propose microwave analogues of the photonic crystals as a route to the experimental study of the transport effects that we predict.
Spin waves are promising information carriers which can be used in modern magnonic devices, characterized by higher performance and lower energy consumption than presently used electronic circuits. However, before practical application of spin waves, the efficient control over spin wave amplitude and phase needs to be developed. We analyze analytically reflection and refraction of the spin waves at the interface between two ferromagnetic materials. In the model we consider the system consisting of two semi-infinite ferromagnetic media, separated by the ultra-narrow interface region with the magnetic anisotropy. We have found the Goos-Hanchen shift for spin waves in transmission and reflection, and performed detailed investigations of its dependence on the anisotropy at the interface and materials surrounding the interface. We have demonstrated possibility of obtaining Goos-Hanchen shift of several wavelengths in reflection for realistic material parameters. That proves the possibility for change of the spin waves phase in ferromagnetic materials at subwavelength distances, which can be regarded as a metasurface for magnonics.
We theoretically predict a giant quantized Goos-H{a}nchen (GH) effect on the surface of graphene in quantum Hall regime. The giant quantized GH effect manifests itself as an angular shift whose quantized step reaches the order of mrad for light beams impinging on a graphene-on-substrate system. The quantized GH effect can be attributed to quantized Hall conductivity, which corresponds to the discrete Landau levels in quantum Hall regime. We find that the quantized step can be greatly enhanced for incident angles near the Brewster angle. Moreover, the Brewster angle is sensitive to the Hall conductivity, and therefore the quantized GH effect can be modulated by the Fermi energy and the external magnetic field. The giant quantized GH effect offers a convenient way to determine the quantized Hall conductivity and the discrete Landau levels by a direct optical measurement.
We study theoretically light propagations at the zigzag edge of a honeycomb photonic crystal consisting of dielectric rods in air, analogous to graphene. Within the photonic band gap of the honeycomb photonic crystal, a unimodal edge state may exist with a sharp confinement of optical fields. Its dispersion can be tuned simply by adjusting the radius of the edge rods. For the edge rods with a graded variation in radius along the edge direction, we show numerically that light beams of different frequencies can be trapped sharply in different spatial locations, rendering wideband trapping of light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا