ﻻ يوجد ملخص باللغة العربية
Segmenting primary objects in a video is an important yet challenging problem in computer vision, as it exhibits various levels of foreground/background ambiguities. To reduce such ambiguities, we propose a novel formulation via exploiting foreground and background context as well as their complementary constraint. Under this formulation, a unified objective function is further defined to encode each cue. For implementation, we design a Complementary Segmentation Network (CSNet) with two separate branches, which can simultaneously encode the foreground and background information along with joint spatial constraints. The CSNet is trained on massive images with manually annotated salient objects in an end-to-end manner. By applying CSNet on each video frame, the spatial foreground and background maps can be initialized. To enforce temporal consistency effectively and efficiently, we divide each frame into superpixels and construct neighborhood reversible flow that reflects the most reliable temporal correspondences between superpixels in far-away frames. With such flow, the initialized foregroundness and backgroundness can be propagated along the temporal dimension so that primary video objects gradually pop-out and distractors are well suppressed. Extensive experimental results on three video datasets show that the proposed approach achieves impressive performance in comparisons with 18 state-of-the-art models.
This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multi-object scenarios. The state-of-the-art methods learn to decode features with a single
Current state-of-the-art object detection and segmentation methods work well under the closed-world assumption. This closed-world setting assumes that the list of object categories is available during training and deployment. However, many real-world
We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation b
Panoptic segmentation has become a new standard of visual recognition task by unifying previous semantic segmentation and instance segmentation tasks in concert. In this paper, we propose and explore a new video extension of this task, called video p
In this work, we propose a novel Reversible Recursive Instance-level Object Segmentation (R2-IOS) framework to address the challenging instance-level object segmentation task. R2-IOS consists of a reversible proposal refinement sub-network that predi