ترغب بنشر مسار تعليمي؟ اضغط هنا

Smart Greybox Fuzzing

247   0   0.0 ( 0 )
 نشر من قبل Marcel B\\\"ohme
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Coverage-based greybox fuzzing (CGF) is one of the most successful methods for automated vulnerability detection. Given a seed file (as a sequence of bits), CGF randomly flips, deletes or bits to generate new files. CGF iteratively constructs (and fuzzes) a seed corpus by retaining those generated files which enhance coverage. However, random bitflips are unlikely to produce valid files (or valid chunks in files), for applications processing complex file formats. In this work, we introduce smart greybox fuzzing (SGF) which leverages a high-level structural representation of the seed file to generate new files. We define innovative mutation operators that work on the virtual file structure rather than on the bit level which allows SGF to explore completely new input domains while maintaining file validity. We introduce a novel validity-based power schedule that enables SGF to spend more time generating files that are more likely to pass the parsing stage of the program, which can expose vulnerabilities much deeper in the processing logic. Our evaluation demonstrates the effectiveness of SGF. On several libraries that parse structurally complex files, our tool AFLSmart explores substantially more paths (up to 200%) and exposes more vulnerabilities than baseline AFL. Our tool AFLSmart has discovered 42 zero-day vulnerabilities in widely-used, well-tested tools and libraries; so far 17 CVEs were assigned.



قيم البحث

اقرأ أيضاً

In recent years, coverage-based greybox fuzzing has proven itself to be one of the most effective techniques for finding security bugs in practice. Particularly, American Fuzzy Lop (AFL for short) is deemed to be a great success in fuzzing relatively simple test inputs. Unfortunately, when it meets structured test inputs such as XML and JavaScript, those grammar-blind trimming and mutation strategies in AFL hinder the effectiveness and efficiency. To this end, we propose a grammar-aware coverage-based greybox fuzzing approach to fuzz programs that process structured inputs. Given the grammar (which is often publicly available) of test inputs, we introduce a grammar-aware trimming strategy to trim test inputs at the tree level using the abstract syntax trees (ASTs) of parsed test inputs. Further, we introduce two grammar-aware mutation strategies (i.e., enhanced dictionary-based mutation and tree-based mutation). Specifically, tree-based mutation works via replacing subtrees using the ASTs of parsed test inputs. Equipped with grammar-awareness, our approach can carry the fuzzing exploration into width and depth. We implemented our approach as an extension to AFL, named Superion; and evaluated the effectiveness of Superion on real-life large-scale programs (a XML engine libplist and three JavaScript engines WebKit, Jerryscript and ChakraCore). Our results have demonstrated that Superion can improve the code coverage (i.e., 16.7% and 8.8% in line and function coverage) and bug-finding capability (i.e., 31 new bugs, among which we discovered 21 new vulnerabilities with 16 CVEs assigned and 3.2K USD bug bounty rewards received) over AFL and jsfunfuzz. We also demonstrated the effectiveness of our grammar-aware trimming and mutation.
560 - Pengfei Wang , Xu Zhou , Kai Lu 2020
Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike c overage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.
Seed scheduling is a prominent factor in determining the yields of hybrid fuzzing. Existing hybrid fuzzers schedule seeds based on fixed heuristics that aim to predict input utilities. However, such heuristics are not generalizable as there exists no one-size-fits-all rule applicable to different programs. They may work well on the programs from which they were derived, but not others. To overcome this problem, we design a Machine learning-Enhanced hybrid fUZZing system (MEUZZ), which employs supervised machine learning for adaptive and generalizable seed scheduling. MEUZZ determines which new seeds are expected to produce better fuzzing yields based on the knowledge learned from past seed scheduling decisions made on the same or similar programs. MEUZZs learning is based on a series of features extracted via code reachability and dynamic analysis, which incurs negligible runtime overhead (in microseconds). Moreover, MEUZZ automatically infers the data labels by evaluating the fuzzing performance of each selected seed. As a result, MEUZZ is generally applicable to, and performs well on, various kinds of programs. Our evaluation shows MEUZZ significantly outperforms the state-of-the-art grey-box and hybrid fuzzers, achieving 27.1% more code coverage than QSYM. The learned models are reusable and transferable, which boosts fuzzing performance by 7.1% on average and improves 68% of the 56 cross-program fuzzing campaigns. MEUZZ discovered 47 deeply hidden and previously unknown bugs--with 21 confirmed and fixed by the developers--when fuzzing 8 well-tested programs with the same configurations as used in previous work.
With its unique advantages such as decentralization and immutability, blockchain technology has been widely used in various fields in recent years. The smart contract running on the blockchain is also playing an increasingly important role in decentr alized application scenarios. Therefore, the automatic detection of security vulnerabilities in smart contracts has become an urgent problem in the application of blockchain technology. Hyperledger Fabric is a smart contract platform based on enterprise-level licensed distributed ledger technology. However, the research on the vulnerability detection technology of Hyperledger Fabric smart contracts is still in its infancy. In this paper, we propose HFContractFuzzer, a method based on Fuzzing technology to detect Hyperledger Fabric smart contracts, which combines a Fuzzing tool for golang named go-fuzz and smart contracts written by golang. We use HFContractFuzzer to detect vulnerabilities in five contracts from typical sources and discover that four of them have security vulnerabilities, proving the effectiveness of the proposed method.
Software model checking is a verification technique which is widely used for checking temporal properties of software systems. Even though it is a property verification technique, its common usage in practice is in bug finding, that is, finding viola tions of temporal properties. Motivated by this observation and leveraging the recent progress in fuzzing, we build a greybox fuzzing framework to find violations of Linear-time Temporal Logic (LTL) properties. Our framework takes as input a sequential program written in C/C++, and an LTL property. It finds violations, or counterexample traces, of the LTL property in stateful software systems; however, it does not achieve verification. Our work substantially extends directed greybox fuzzing to witness arbitrarily complex event orderings. We note that existing directed greybox fuzzing approaches are limited to witnessing reaching a location or witnessing simple event orderings like use-after-free. At the same time, compared to model checkers, our approach finds the counterexamples faster, thereby finding more counterexamples within a given time budget. Our LTL-Fuzzer tool, built on top of the AFL fuzzer, is shown to be effective in detecting bugs in well-known protocol implementations, such as OpenSSL and Telnet. We use LTL-Fuzzer to reproduce known vulnerabilities (CVEs), to find 15 zero-day bugs by checking properties extracted from RFCs (for which 10 CVEs have been assigned), and to find violations of both safety as well as liveness properties in real-world protocol implementations. Our work represents a practical advance over software model checkers -- while simultaneously representing a conceptual advance over existing greybox fuzzers. Our work thus provides a starting point for understanding the unexplored synergies between software model checking and greybox fuzzing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا