ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely large magnetoresistance induced by hidden three-dimensional Dirac bands in nonmagnetic semimetal InBi

82   0   0.0 ( 0 )
 نشر من قبل Kenjiro Okawa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extremely large positive magnetoresistance (XMR) was found in a nonmagnetic semimetal InBi. Using several single crystals with different residual resistivity ratios (RRRs), we revealed that the XMR strongly depended on the RRR (sample quality). Assuming that there were no changes in effective mass m* and carrier concentrations in these single crystals, this dependence was explained by a semiclassical two-carrier model. First-principle calculations including the spin-orbit interactions (SOI) unveiled that InBi had a compensated carrier balance and SOI-induced hidden three-dimensional (3D) Dirac bands at the M and R points. Because the small m* and the large carrier mobilities will be realized, these hidden 3D Dirac bands should play an important role for the XMR in InBi. We suggest that this feature can be employed as a novel strategy for the creation of XMR semimetals.



قيم البحث

اقرأ أيضاً

The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals ho st bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the $a$-$b$ plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold $a$-$b$ plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmanns semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of $2.6times10^{-14}$~s and the mean free path of $15$~nm at 1.8~K in our samples of ZrSiS.
Transition-metal dichalcogenides (WTe$_2$ and MoTe$_2$) have drawn much attention, recently, because of the nonsaturating extremely large magnetoresistance (XMR) observed in these compounds in addition to the predictions of likely type-II Weyl semime tals. Contrary to the topological insulators or Dirac semimetals where XMR is linearly dependent on the field, in WTe$_2$ and MoTe$_2$ the XMR is nonlinearly dependent on the field, suggesting an entirely different mechanism. Electron-hole compensation has been proposed as a mechanism of this nonsaturating XMR in WTe$_2$, while it is yet to be clear in the case of MoTe$_2$ which has an identical crystal structure of WTe$_2$ at low temperatures. In this paper, we report low-energy electronic structure and Fermi surface topology of MoTe$_2$ using angle-resolved photoemission spectrometry (ARPES) technique and first-principle calculations, and compare them with that of WTe$_2$ to understand the mechanism of XMR. Our measurements demonstrate that MoTe$_2$ is an uncompensated semimetal, contrary to WTe$_2$ in which compensated electron-hole pockets have been identified, ruling out the applicability of charge compensation theory for the nonsaturating XMR in MoTe$_2$. In this context, we also discuss the applicability of the existing other conjectures on the XMR of these compounds.
Electron-hole (e-h) compensation is a hallmark of multi-band semimetals with extremely large magnetoresistance (XMR) and has been considered to be the basis for XMR. Recent spectroscopic experiments, however, reveal that YSb with non-saturating magne toresistance is uncompensated, questioning the e-h compensation scenario for XMR. Here we demonstrate with magnetoresistivity and angle dependent Shubnikov - de Haas (SdH) quantum oscillation measurements that YSb does have nearly perfect e-h compensation, with a density ratio of $0.95$ for electrons and holes. The density and mobility anisotropy of the charge carriers revealed in the SdH experiments allow us to quantitatively describe the magnetoresistance with an anisotropic multi-band model that includes contributions from all Fermi pockets. We elucidate the role of compensated multi-bands in the occurrence of XMR by demonstrating the evolution of calculated magnetoresistances for a single band and for various combinations of electron and hole Fermi pockets.
141 - Zhonghao Liu , Man Li , Qi Wang 2020
Layered kagome-lattice 3d transition metals are emerging as an exciting platform to explore the frustrated lattice geometry and quantum topology. However, the typical kagome electronic bands, characterized by sets of the Dirac-like band capped by a p hase-destructive flat band, have not been clearly observed, and their orbital physics are even less well investigated. Here, we present close-to-textbook kagome bands with orbital differentiation physics in CoSn, which can be well described by a minimal tight-binding model with single-orbital hopping in Co kagome lattice. The capping flat bands with bandwidth less than 0.2 eV run through the whole Brillouin zone, especially the bandwidth of the flat band of out-of-plane orbitals is less than 0.02 eV along G-M. The energy gap induced by spin-orbit interaction at the Dirac cone of out-of-plane orbitals is much smaller than that of in-plane orbitals, suggesting orbital-selective character of the Dirac fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا