ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of the decay $Htogammagamma$ using the approximate $alpha_s^4$-corrections and the principle of maximum conformality

299   0   0.0 ( 0 )
 نشر من قبل Xing-Gang Wu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Higgs boson decay channel, $Htogammagamma$, is one of the most important channels for probing the properties of the Higgs boson. In the paper, we reanalyze its decay width by using the QCD corrections up to $alpha_s^4$-order level. The principle of maximum conformality has been adopted to achieve a precise pQCD prediction without conventional renormalization scheme-and-scale ambiguities. By taking the Higgs mass as the one given by the ATLAS and CMS collaborations, i.e. $M_{H}=125.09pm0.21pm0.11$ GeV, we obtain $Gamma(Hto gammagamma)|_{rm LHC}=9.364^{+0.076}_{-0.075}$ KeV.



قيم البحث

اقرأ أيضاً

In the paper, we study the properties of the $Z$-boson hadronic decay width by using the $mathcal{O}(alpha_s^4)$-order quantum chromodynamics (QCD) corrections with the help of the principle of maximum conformality (PMC). By using the PMC single-scal e approach, we obtain an accurate renormalization scale-and-scheme independent perturbative QCD (pQCD) correction for the $Z$-boson hadronic decay width, which is independent to any choice of renormalization scale. After applying the PMC, a more convergent pQCD series has been obtained; and the contributions from the unknown $mathcal{O}(alpha_s^5)$-order terms are highly suppressed, e.g. conservatively, we have $Delta Gamma_{rm Z}^{rm had}|^{{cal O}(alpha_s^5)}_{rm PMC}simeq pm 0.004$ MeV. In combination with the known electro-weak (EW) corrections, QED corrections, EW-QCD mixed corrections, and QED-QCD mixed corrections, our final prediction of the hadronic $Z$ decay width is $Gamma_{rm Z}^{rm had}=1744.439^{+1.390}_{-1.433}$ MeV, which agrees with the PDG global fit of experimental measurements, $1744.4pm 2.0$ MeV.
In the paper, we study the $Upsilon(1S)$ leptonic decay width $Gamma(Upsilon(1S)to ell^+ell^-)$ by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum flow of the process, whose value is independent to the choice of the renormalization scale and its prediction thus avoids the conventional renormalization scale ambiguities. Using the known next-to-next-to-next-to-leading order perturbative series together with the PMC single scale-setting approach, we do obtain a renormalization scale independent decay width, $Gamma_{Upsilon(1S) to e^+ e^-} = 1.262^{+0.195}_{-0.175}$ keV, where the error is squared average of those from $alpha_s(M_{Z})=0.1181pm0.0011$, $m_b=4.93pm0.03$ GeV and the choices of factorization scales within $pm 10%$ of their central values. To compare with the result under conventional scale-setting approach, this decay width agrees with the experimental value within errors, indicating the importance of a proper scale-setting approach.
We present a detailed study on the properties of the free energy density at the high temperature by applying the principle of maximum conformality (PMC) scale-setting method within the effective field theory. The PMC utilizes the renormalization grou p equation recursively to identify the occurrence and pattern of the non-conformal ${beta_i}$-terms, and determines the optimal renormalization scale at each order. Our analysis shows that a more accurate free energy density up to $g_s^5$-order level without renormalization scale dependence can be achieved by applying the PMC. We also observe that by using a smaller factorization scale around the effective parameter $m_E$, the PMC prediction shall be consistent with the Lattice QCD prediction derived at the low temperature.
The next-to-next-to-leading order (NNLO) pQCD prediction for the $gammagamma^* to eta_c$ form factor was evaluated in 2015 using nonrelativistic QCD (NRQCD). A strong discrepancy between the NRQCD prediction and the BaBar measurements was observed. U ntil now there has been no solution for this puzzle. In this paper, we present a NNLO analysis by applying the Principle of Maximum Conformality (PMC) to set the renormalization scale. By carefully dealing with the light-by-light diagrams at the NNLO level, the resulting high precision PMC prediction agrees with the BaBar measurements within errors, and the conventional renormalization scale uncertainty is eliminated. The PMC is consistent with all of the requirements of the renormalization group, including scheme-independence. The application of the PMC thus provides a rigorous solution for the $gammagamma^* to eta_c$ form factor puzzle, emphasizing the importance of correct renormalization scale-setting. The results also support the applicability of NRQCD to hard exclusive processes involving charmonium.
We present a comprehensive and self-consistent analysis for the thrust distribution by using the Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running coupling using PMC via renormalization group equation, the scale in the running coupling shows the correct physical behavior and the correct number of active flavors is determined. The resulting PMC predictions agree with the precise measurements for both the thrust differential distributions and the thrust mean values. Moreover, we provide a new remarkable way to determine the running of the coupling constant $alpha_s(Q^2)$ from the measurement of the jet distributions in electron-positron annihilation at a single given value of the center-of-mass energy $sqrt{s}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا