ﻻ يوجد ملخص باللغة العربية
One of the central problems in quantum theory is to characterize, detect, and quantify quantumness in terms of classical strategies. Dephasing processes, caused by non-dissipative information exchange between quantum systems and environments, provides a natural platform for this purpose, as they control the quantum-to-classical transition. Recently, it has been shown that dephasing dynamics itself can exhibit (non)classical traits, depending on the nature of the system-environment correlations and the related (im)possibility to simulate these dynamics with Hamiltonian ensembles---the classical strategy. Here we establish the framework of detecting and quantifying the nonclassicality for pure dephasing dynamics. The uniqueness of the canonical representation of Hamiltonian ensembles is shown, and a constructive method to determine the latter is presented. We illustrate our method for qubit, qutrit, and qubit-pair pure dephasing and describe how to implement our approach with quantum process tomography experiments. Our work is readily applicable to present-day quantum experiments.
We take a resource-theoretic approach to the problem of quantifying nonclassicality in Bell scenarios. The resources are conceptualized as probabilistic processes from the setting variables to the outcome variables having a particular causal structur
Quantifying quantum coherence is a key task in the resource theory of coherence. Here we establish a good coherence monotone in terms of a state conversion process, which automatically endows the coherence monotone with an operational meaning. We sho
We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for non-zero detuning and dephasing. It is found that dephasing shifts the intensity of the emission pea
It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related
We introduce an experimentally accessible method to measure a unique degree of nonclassicality, based on the quantum superposition principle, for arbitrary quantum states. We formulate witnesses and test a given state for any particular value of this