ﻻ يوجد ملخص باللغة العربية
There is a correlation between bulge mass of the three main galaxies of the Local Group (LG), i.e. M31, Milky Way (MW), and M33, and the number of their dwarf spheroidal galaxies. A similar correlation has also been reported for spiral galaxies with comparable luminosities outside the LG. These correlations do not appear to be expected in standard hierarchical galaxy formation. In this contribution, and for the first time, we present a quantitative investigation of the expectations of the standard model of cosmology for this possible relation using a galaxy catalogue based on the Millennium-II simulation. Our main sample consists of disk galaxies at the centers of halos with a range of virial masses similar to M33, MW, and M31. For this sample, we find an average trend (though with very large scatter) similar to the one observed in the LG; disk galaxies in heavier halos on average host heavier bulges and larger number of satellites. In addition, we study sub-samples of disk galaxies with very similar stellar or halo masses (but spanning a range of 2-3 orders of magnitude in bulge mass) and find no obvious trend in the number of satellites vs. bulge mass. We conclude that while for a wide galaxy mass range a relation arises (which seems to be a manifestation of the satellite number - halo mass correlation), for a narrow one there is no relation between number of satellites and bulge mass in the standard model. Further studies are needed to better understand the expectations of the standard model for this possible relation.
We have constructed a mass-selected sample of Mstar>10^11Msolar galaxies at 1<z<3 in the CANDELS UDS and COSMOS fields and have decomposed these systems into their separate bulge and disk components according to their H(160)-band morphologies. By ext
Recently van Dokkum et al. (2018b) reported that the galaxy NGC 1052-DF2 (DF2) lacks dark matter if located at $20$ Mpc from Earth. In contrast, DF2 is a dark-matter-dominated dwarf galaxy with a normal globular cluster population if it has a much sh
We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1<z<3. Our analysis is based on a bulge-disk decomposition of 396 galaxies with Mstar>10^11 Msolar from the CAN
We present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies ($M_{rm vir} simeq 10^{10} M_{odot}$) and ultra-faint galaxies ($M_{rm vir} simeq 10^9 M_{odot}$), and with two fee
We investigate the population of dwarf galaxies with stellar masses similar to the Large Magellanic Cloud (LMC) and M33 in the EAGLE galaxy formation simulation. In the field, galaxies reside in haloes with stellar-to-halo mass ratios of $1.03^{+0.50