ترغب بنشر مسار تعليمي؟ اضغط هنا

On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics

153   0   0.0 ( 0 )
 نشر من قبل Maximilian Saller
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulating the nonadiabatic dynamics of condensed-phase systems continues to pose a significant challenge for quantum dynamics methods. Approaches based on sampling classical trajectories within the mapping formalism, such as the linearized semiclassical initial value representation (LSC-IVR), can be used to approximate quantum correlation functions in dissipative environments. Such semiclassical methods however commonly fail in quantitatively predicting the electronic-state populations in the long-time limit. Here we present a suggestion to minimize this difficulty by splitting the problem into two parts, one of which involves the identity, and treating this operator by quantum-mechanical principles rather than with classical approximations. This strategy is applied to numerical simulations of spin-boson model systems, showing its potential to drastically improve the performance of LSC-IVR and related methods with no change to the equations of motion or the algorithm in general, but rather by simply using different functional forms of the observables.



قيم البحث

اقرأ أيضاً

We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time-evolution of the nuclear and electronic phase space variables as well as the Monodromy matrix, under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve-crossing in model two-level systems and show that in the quantum limit MQC-IVR is in good agreement with the exact quantum results, whereas in the classical limit the method yields results in keeping with mean-field approaches like the Linearized Semiclassical IVR. Finally, exploiting the ability of MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.
We present a new partially linearized mapping-based approach for approximating real-time quantum correlation functions in condensed-phase nonadiabatic systems, called spin-PLDM. Within a classical trajectory picture, partially linearized methods trea t the electronic dynamics along forward and backward paths separately by explicitly evolving two sets of mapping variables. Unlike previously derived partially linearized methods based on the Meyer-Miller-Stock-Thoss mapping, spin-PLDM uses the Stratonovich-Weyl transform to describe the electronic dynamics for each path within the spin-mapping space; this automatically restricts the Cartesian mapping variables to lie on a hypersphere and means that the classical equations of motion can no longer propagate the mapping variables out of the physical subspace. The presence of a rigorously derived zero-point energy parameter also distinguishes spin-PLDM from other partially linearized approaches. These new features appear to give the method superior accuracy for computing dynamical observables of interest, when compared with other methods within the same class. The superior accuracy of spin-PLDM is demonstrated within this paper through application of the method to a wide range of spin-boson models, as well as to the Fenna-Matthews-Olsen complex.
In the previous paper [J. R. Mannouch and J. O. Richardson, J.~Chem.~Phys.~xxx, xxxxx (xxxx)] we derived a new partially linearized mapping-based classical-trajectory technique, called spin-PLDM. This method describes the dynamics associated with the forward and backward electronic path integrals, using a Stratonovich-Weyl approach within the spin-mapping space. While this is the first example of a partially linearized spin mapping method, fully linearized spin mapping is already known to be capable of reproducing dynamical observables for a range of nonadiabatic model systems reasonably accurately. Here we present a thorough comparison of the terms in the underlying expressions for the real-time quantum correlation functions for spin-PLDM and fully linearized spin mapping in order to ascertain the relative accuracy of the two methods. In particular, we show that spin-PLDM contains an additional term within the definition of its real-time correlation function, which diminishes many of the known errors that are ubiquitous for fully linearized approaches. One advantage of partially linearized methods over their fully linearized counterparts is that the results can be systematically improved by re-sampling the mapping variables at intermediate times. We derive such a scheme for spin-PLDM and show that for systems for which the approximation of classical nuclei is valid, numerically exact results can be obtained using only a few `jumps. Additionally, we implement focused initial conditions for the spin-PLDM method, which reduces the number of classical trajectories that are needed in order to reach convergence of dynamical quantities, with seemingly little difference to the accuracy of the result.
Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in the discrete.
The Clifford+$T$ quantum computing gate library for single qubit gates can create all unitary matrices that are generated by the group $langle H, Trangle$. The matrix $T$ can be considered the fourth root of Pauli $Z$, since $T^4 = Z$ or also the eig hth root of the identity $I$. The Hadamard matrix $H$ can be used to translate between the Pauli matrices, since $(HTH)^4$ gives Pauli $X$. We are generalizing both these roots of the Pauli matrices (or roots of the identity) and translation matrices to investigate the groups they generate: the so-called Pauli root groups. In this work we introduce a formalization of such groups, study finiteness and infiniteness properties, and precisely determine equality and subgroup relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا