ﻻ يوجد ملخص باللغة العربية
In this work we apply the Deep Galerkin Method (DGM) described in Sirignano and Spiliopoulos (2018) to solve a number of partial differential equations that arise in quantitative finance applications including option pricing, optimal execution, mean field games, etc. The main idea behind DGM is to represent the unknown function of interest using a deep neural network. A key feature of this approach is the fact that, unlike other commonly used numerical approaches such as finite difference methods, it is mesh-free. As such, it does not suffer (as much as other numerical methods) from the curse of dimensionality associated with highdimensional PDEs and PDE systems. The main goals of this paper are to elucidate the features, capabilities and limitations of DGM by analyzing aspects of its implementation for a number of different PDEs and PDE systems. Additionally, we present: (1) a brief overview of PDEs in quantitative finance along with numerical methods for solving them; (2) a brief overview of deep learning and, in particular, the notion of neural networks; (3) a discussion of the theoretical foundations of DGM with a focus on the justification of why this method is expected to perform well.
We investigate solving partial integro-differential equations (PIDEs) using unsupervised deep learning in this paper. To price options, assuming underlying processes follow Levy processes, we require to solve PIDEs. In supervised deep learning, pre-c
We present a deep learning algorithm for the numerical solution of parametric families of high-dimensional linear Kolmogorov partial differential equations (PDEs). Our method is based on reformulating the numerical approximation of a whole family of
We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018) to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs
We describe a neural-based method for generating exact or approximate solutions to differential equations in the form of mathematical expressions. Unlike other neural methods, our system returns symbolic expressions that can be interpreted directly.
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high ord