ترغب بنشر مسار تعليمي؟ اضغط هنا

Binding energies of excitonic complexes in type-II quantum rings from diffusion quantum Monte Carlo calculations

119   0   0.0 ( 0 )
 نشر من قبل David Thomas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Excitonic complexes in type-II quantum-ring heterostructures may be considered as artificial atoms due to the confinement of only one charge-carrier type in an artificial nucleus. Binding energies of excitons, trions, and biexcitons in these nanostructures are then effectively ionization energies of these artificial atoms. The binding energies reported here are calculated within the effective-mass approximation using the diffusion quantum Monte Carlo method and realistic geometries for gallium antimonide rings in gallium arsenide. The electrons form a halo outside the ring, with very little charge density inside the central cavity of the ring. The de-excitonization and binding energies of the complexes are relatively independent of the precise shape of the ring.

قيم البحث

اقرأ أيضاً

Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional (2D) semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra we provide statistically exact diffusion quantum Monte Carlo binding-energy data for Mott-Wannier models of excitons, trions, and biexcitons in 2D semiconductors. We also provide contact pair densities to allow a description of contact (exchange) interactions between charge carriers using first-order perturbation theory. Our data indicate that the binding energy of a trion is generally larger than that of a biexciton in 2D semiconductors. We provide interpolation formulas giving the binding energy and contact density of 2D semiconductors as functions of the electron and hole effective masses and the in-plane polarizability.
Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra we provide (i) statistically exact d iffusion quantum Monte Carlo binding-energy data for a Mott-Wannier model of (donor/acceptor-bound) excitons, trions, and biexcitons in two-dimensional semiconductors in which charges interact via the Keldysh potential, (ii) contact pair-distribution functions to allow a perturbative description of contact interactions between charge carriers, and (iii) an analysis and classification of the different types of bright trion and biexciton that can be seen in single-layer molybdenum and tungsten dichalcogenides. We investigate the stability of biexcitons in which two charge carriers are indistinguishable, finding that they are only bound when the indistinguishable particles are several times heavier than the distinguishable ones. Donor/acceptor-bound biexcitons have similar binding energies to the experimentally measured biexciton binding energies. We predict the relative positions of all stable free and bound excitonic complexes of distinguishable charge carriers in the photoluminescence spectra of WSe$_2$ and MoSe$_2$.
We report diffusion quantum Monte Carlo calculations of the interlayer binding energy of bilayer graphene. We find the binding energies of the AA- and AB-stacked structures at the equilibrium separation to be 11.5(9) and 17.7(9) meV/atom, respectivel y. The out-of-plane zone-center optical phonon frequency predicted by our binding-energy curve is consistent with available experimental results. As well as assisting the modeling of interactions between graphene layers, our results will facilitate the development of van der Waals exchange-correlation functionals for density functional theory calculations.
208 - S. Azadi , , T. D. Kuhne 2018
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow an d Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the non-local correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. Beside the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the ground s for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and $Lambda$ particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا