ﻻ يوجد ملخص باللغة العربية
We have observed the active star $xi$ Boo A (HD 131156A) with high precision broadband linear polarimetry contemporaneously with circular spectropolarimetry. We find both signals are modulated by the 6.43 day rotation period of $xi$ Boo A. The signals from the two techniques are 0.25 out of phase, consistent with the broadband linear polarization resulting from differential saturation of spectral lines in the global transverse magnetic field. The mean magnitude of the linear polarization signal is ~4 ppm/G but its structure is complex and the amplitude of the variations suppressed relative to the longitudinal magnetic field. The result has important implications for current attempts to detect polarized light from hot Jupiters orbiting active stars in the combined light of the star and planet. In such work stellar activity will manifest as noise, both on the time scale of stellar rotation, and on longer time scales - where changes in activity level will manifest as a baseline shift between observing runs.
In this contribution, we present BRITE observations of the early-B supergiants $epsilon$ Ori and $kappa$ Ori. We perform a preliminary analysis of the data acquired over the first two Orion observing runs. We evaluate whether they are compatible with
Despite of the importance of magnetic fields for the full understanding of the properties of accreting Herbig Ae/Be stars, these fields have scarcely been studied over the rotation cycle until now. One reason for the paucity of such observations is t
Despite a century of remarkable progress in understanding stellar interiors, we know surprisingly little about the inner workings of stars spinning near their critical limit. New interferometric imaging of these so-called ``rapid rotators combined wi
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray
We report the latest set of spectropolarimetric observations of the magnetic $beta$ Cep star $xi^1$ CMa. The new observations confirm the long-period model of Shultz et al. (2017), who proposed a rotational period of about 30 years and predicted that