ترغب بنشر مسار تعليمي؟ اضغط هنا

The first study of 54 new eccentric eclipsing binaries in our Galaxy

64   0   0.0 ( 0 )
 نشر من قبل Petr Zasche
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the apsidal motion and light curve parameters of 54 never-before-studied galactic Algol-type binaries. This is the first analysis of such a large sample of eccentric eclipsing binaries in our Galaxy, and has enabled us to identify several systems that are worthy of further study. Bringing together data from various databases and surveys, supplemented with new observations, we have been able to trace the long-term evolution of the eccentric orbit over durations extending back up to several decades. Our present study explores a rather different sample of stars to those presented in the previously published catalogue of eccentric eclipsing binaries, sampling to fainter magnitudes, covering later spectral types, sensitive to different orbital periods with more than 50% of our systems having periods longer than six days. The typical apsidal motion in the sample is rather slow (mostly of order of centuries long), although in some cases this is less than 50 yr. All of the systems, except one, have eccentricities less than 0.5, with an average value of 0.23. Several of the stars also show evidence for additional period variability. In particular we can identify three systems in the sample, HD 44093, V611 Pup, and HD 313631, which likely represent relativistic apsidal rotators.



قيم البحث

اقرأ أيضاً

69 - P. Zasche , Z. Henzl , M. Masek 2021
We report the very first analysis of 27 eclipsing binary systems with high eccentricities that sometimes reach up to 0.8. The orbital periods for these systems range from 1.4 to 37 days, and the median of the sample is 10.3 days. Star CzeV3392 (= UCA C4 623 022784), for example, currently is the eclipsing system with the highest eccentricity (e = 0.22) of stars with a period shorter than 1.5 days. We analysed the light curves of all 27 systems and obtained the physical parameters of both components, such as relative radii, inclinations, or relative luminosities. The most important parameters appear to be the derived periods and eccentricities. They allow constructing the period-eccentricity diagram. This eccentricity distribution is used to study the tidal circularisation theories. Many systems have detected third-light contributions, which means that the Kozai-Lidov cycles might also be responsible for the high eccentricities in some of the binaries.
We present an extensive study of 162 early-type binary systems located in the LMC galaxy that show apsidal motion and have never been studied before. For the ample systems, we performed light curve and apsidal motion modelling for the first time. The se systems have a median orbital period of 2.2 days and typical periods of the apsidal motion were derived to be of the order of decades. We identified two record-breaking systems. The first, OGLE LMC-ECL-22613, shows the shortest known apsidal motion period among systems with main sequence components (6.6 years); it contains a third component with an orbital period of 23 years. The second, OGLE LMC-ECL-17226, is an eccentric system with the shortest known orbital period (0.9879 days) and with quite fast apsidal motion period (11 years). Among the studied systems, 36 new triple-star candidates were identified based on the additional period variations. This represents more than 20% of all studied systems, which is in agreement with the statistics of multiples in our Galaxy. However, the fraction should only be considered as a lower limit of these early-type stars in the LMC because of our method of detection, data coverage, and limited precision of individual times of eclipses.
76 - V. Kudak , M. Fedurco , V. Perig 2021
We present the first BVR photometry, period variation, and photometric light-curve analysis of two poorly studied eclipsing binaries V1321 Cyg and CR Tau. Observations were carried out from November 2017 to January 2020 at the observatory of Uzhhorod National University. Period variations were studied using all available early published as well as our minima times. We have used newly developed ELISa code for the light curve analysis and determination of photometric parameters of both systems. We found that V1321 Cyg is a close detached eclipsing system with a low photometric mass ratio of $q=0.28$ which suggests that the binary is a post mass transfer system. No significant period changes in this system are detected. CR Tau is, on the other hand, a semi-detached system where the secondary component almost fills its Roche lobe. We detected a long-term period increase at a rate of $1.49 times 10^{-7} d/y$, which support mass transfer from lower mass secondary component to the more massive primary.
Eclipsing binary stars are rare and extremely valuable astrophysical laboratories that make possible precise determination of fundamental stellar parameters. Investigation of early-type chemically peculiar stars in eclipsing binaries provides importa nt information for understanding the origin and evolutionary context of their anomalous surface chemistry. In this study we discuss observations of eclipse variability in six mercury-manganese (HgMn) stars monitored by the TESS satellite. These discoveries double the number of known eclipsing HgMn stars and yield several interesting objects requiring further study. In particular, we confirm eclipses in HD 72208, thereby establishing this object as the longest-period eclipsing HgMn star. Among five other eclipsing binaries, reported here for the first time, HD 36892 and HD 53004 stand out as eccentric systems showing heartbeat variability in addition to eclipses. The latter object has the highest eccentricity among eclipsing HgMn stars and also exhibits tidally induced oscillations. Finally, we find evidence that HD 55776 may be orbited by a white dwarf companion.
113 - P. Zasche , M. Wolf , J. Vrastil 2014
Aims: The Danish 1.54-meter telescope at the La Silla observatory was used for photometric monitoring of selected eccentric eclipsing binaries located in the Small Magellanic Cloud. The new times of minima were derived for these systems, which are ne eded for accurate determination of the apsidal motion. Moreover, many new times of minima were derived from the photometric databases OGLE and MACHO. Eighteen early-type eccentric-orbit eclipsing binaries were studied. Methods: Their (O-C) diagrams of minima timings were analysed and the parameters of the apsidal motion were obtained. The light curves of these eighteen binaries were analysed using the program PHOEBE, giving the light curve parameters. For several systems the additional third light also was detected. Results: We derived for the first time and significantly improved the relatively short periods of apsidal motion from 19 to 142 years for these systems. The relativistic effects are weak, up to 10% of the total apsidal motion rate. For one system (OGLE-SMC-ECL-0888), the third-body hypothesis was also presented, which agrees with high value of the third light for this system detected during the light curve solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا